Abstract
Abstract
Background
Air pollution is a global public health concern. The World Health Organization has recently set up a goal of saving 7 million people globally by 2030 from air pollution related death. We conducted an ecological study of geographical variation to explore the association between air pollution (specifically, particulate matter <2.5 μm in aerodynamic diameter [PM2.5], particulate matter <10 μm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, nitric oxide, and ozone) and cancer incidence in Taiwan, from 2012 to 2016.
Methods
In this study, the yearly average concentrations of each air pollutant at 75 air quality monitoring stations were calculated, and using the kriging method, the concentrations were extrapolated to each and every geographical central point of 349 local administrative areas of Taiwan. Spearman rank correlation coefficients between the age-adjusted cancer incidence rates and various air pollutants were calculated by stratifying genders and urbanization degrees of the local administrative areas. A total of 70 correlation coefficients were calculated.
Results
In total, 17 correlation coefficients were significantly positive at an alpha level of 0.05. Among these, four correlation coefficients between the age-adjusted cancer incidence rates and PM2.5 levels remained significant after Bonferroni correction. For men in developing towns, general towns, and aged towns and for women in aged towns, the age-adjusted cancer incidence rates increased 13.1 (95% confidence interval [CI], 8.8–17.6), 11 (95% CI, 5.6–16.4), 16.7 (95% CI, 6.9–26.4), and 11.9 (95% CI, 5.6–18.2) per 100,000 populations, respectively, for every 1 μg/m3 increment in PM2.5 concentrations.
Conclusions
A significantly positive correlation was observed between the PM2.5 level and cancer incidence rate after multiple testing correction.
Funder
Ministry of Health and Welfare in Taiwan
Ministry of Science and Technology in Taiwan
Ministry of Education (MOE) in Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference37 articles.
1. World Health Organization. Regional Office for Europe. Air quality guidelines global update 2005 : particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Copenhagen: WHO Regional Office for Europe; 2006.
http://www.who.int/iris/handle/10665/107823
2. North CM, Rice MB, Ferkol T, Gozal D, Hui C, Jung SH, et al. Air pollution in the Asia-Pacific region. A joint Asian Pacific Society of Respirology/American Thoracic Society perspective. Am J Respir Crit Care Med. 2019;199(6):693–700.
3. Cicoira M. Ambient air pollution as a new risk factor for cardiovascular diseases: time to take action. Eur J Prev Cardiol. 2018;25(8):816–7.
4. Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory Societies’ environmental committee, part 2: air pollution and organ systems. Chest. 2019;155(2):417–26.
5. Turner MC, Krewski D, Diver WR, Pope CA, Burnett RT, Jerrett M, et al. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ Health Perspect. 2017;125(8):087013.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献