The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Americans

Author:

Wu Yan,Huang Meng,Wang Ximei,Li Yong,Jiang Lei,Yuan Yuan

Abstract

Abstract Background Tuberculosis (TB), a preventable and curable disease, is claimed as the second largest number of fatalities, and there are 9,025 cases reported in the United States in 2018. Many researchers have done a lot of research and achieved remarkable results, but TB is still a severe problem for human beings. The study is a further exploration of the prevention and control of tuberculosis. Methods In the paper, we propose a new dynamic model to study the transmission dynamics of TB, and then use global differential evolution and local sequential quadratic programming (DESQP) optimization algorithm to estimate parameters of the model. Finally, we use Latin hypercube sampling (LHS) and partial rank correlation coefficients (PRCC) to analyze the influence of parameters on the basic reproduction number ($\mathcal R_{0}$ R 0 ) and the total infectious (including the diagnosed, undiagnosed and incomplete treatment infectious), respectively. Results According to the research, the basic reproduction number is computed as 2.3597 from 1984 to 2018, which means TB is also an epidemic in the US. The diagnosed rate is 0.6082, which means the undiagnosed will be diagnosed after 1.6442 years. The diagnosed will recover after an average of 1.9912 years. Moreover, some diagnosed will end the treatment after 1.7550 years for some reason. From the study, it’s shown that 2.40% of the recovered will be reactivated, and 13.88% of the newborn will be vaccinated. However, the immune system will be lost after about 19.6078 years. Conclusion Through the results of this study, we give some suggestions to help prevent and control the TB epidemic in the United States, such as prolonging the protection period of the vaccine by developing new and more effective vaccines to prevent TB; using the Chemoprophylaxis for incubation patients to prevent their conversion into active TB; raising people’s awareness of the prevention and control of TB and treatment after illness; isolating the infected to reduce the spread of TB. According to the latest report in the announcement that came at the first WHO Global Ministerial Conference on Ending tuberculosis in the Sustainable Development Era, we predict that it is challenging to control TB by 2030.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference81 articles.

1. Moualeu-Ngangue D, Röblitz S, Ehrig R, Deuflhard P. Parameter identification in a tuberculosis model for Cameroon. PloS one. 2015; 10(4):0120607.

2. World Health Organization (WHO). Global Tuberculosis Report 2018. WHO: World Health Organization; 2018. https://apps.who.int/iris/handle/10665/274453. Accessed 10 July 2020.

3. Centers for Disease Control and Prevention. How TB Spreads. https://www.cdc.gov/tb/topic/basics/howtbspreads.htm. Accessed 11 Mar 2016.

4. Castillo-Chavez C, Song B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004; 1(2):361–404.

5. World Health Organization (WHO). BCG vaccines: WHO position paper - February 2018. Releve Epidemiologique Hebdomadaire. 2018; 93(8):73–96.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3