Author:
Cortes-Ramirez Javier,Gatton Michelle,Wilches-Vega Juan D.,Mayfield Helen J.,Wang Ning,Paris-Pineda Olga M.,Sly Peter D.
Abstract
Abstract
Background
Acute respiratory infections (ARI) in Cúcuta -Colombia, have a comparatively high burden of disease associated with high public health costs. However, little is known about the epidemiology of these diseases in the city and its distribution within suburban areas. This study addresses this gap by estimating and mapping the risk of ARI in Cúcuta and identifying the most relevant risk factors.
Methods
A spatial epidemiological analysis was designed to investigate the association of sociodemographic and environmental risk factors with the rate of ambulatory consultations of ARI in urban sections of Cúcuta, 2018. The ARI rate was calculated using a method for spatial estimation of disease rates. A Bayesian spatial model was implemented using the Integrated Nested Laplace Approximation approach and the Besag-York-Mollié specification. The risk of ARI per urban section and the hotspots of higher risk were also estimated and mapped.
Results
A higher risk of IRA was found in central, south, north and west areas of Cúcuta after adjusting for sociodemographic and environmental factors, and taking into consideration the spatial distribution of the city’s urban sections. An increase of one unit in the percentage of population younger than 15 years; the Index of Multidimensional Poverty and the rate of ARI in the migrant population was associated with a 1.08 (1.06—1.1); 1.04 (1.01—1.08) and 1.25 (1.22—1.27) increase of the ARI rate, respectively. Twenty-four urban sections were identified as hotspots of risk in central, south, north and west areas in Cucuta.
Conclusion
Sociodemographic factors and their spatial patterns are determinants of acute respiratory infections in Cúcuta. Bayesian spatial hierarchical models can be used to estimate and map the risk of these infections in suburban areas of large cities in Colombia. The methods of this study can be used globally to identify suburban areas and or specific communities at risk to support the implementation of prevention strategies and decision-making in the public and private health sectors.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference59 articles.
1. Wang X, Li Y, O’Brien KL, Madhi SA, Widdowson MA, Byass P, et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. Lancet Glob Health. 2020;8(4):e497–e510.
2. Forum of International Respiratory Societies. The global impact of respiratory disease. Third Edition. 2021.
3. Nsoh M, Mankollo BOY, Ebongue M, Cyprien KN, Likeng JLN, Islam SMS, et al. Acute respiratory infection related to air pollution in Bamenda, North West Region of Cameroon. Pan Afr Med J. 2019;32(1):99.
4. Hanigan IC, Johnston FH, Morgan GG. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996–2005: a time-series study. Environ Health. 2008;7(1):42.
5. Chakrabarti S, Khan MT, Kishore A, Roy D, Scott SP. Risk of acute respiratory infection from crop burning in India: estimating disease burden and economic welfare from satellite and national health survey data for 250 000 persons. Int J Epidemiol. 2019;48(4):1113–24.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献