Changing epidemiology of yellow fever virus in Oyo State, Nigeria

Author:

Bassey Bassey Enya,Braka Fiona,Onyibe Rosemary,Kolude Olufunmilola Olawumi,Oluwadare Marcus,Oluwabukola Alawale,Omotunde Ogunlaja,Iyanda Oluwatobi Adeoluwa,Tella Adedamola Ayodeji,Olanike Olayiwola Suliat

Abstract

Abstract Background Yellow Fever is an acute viral hemorrhagic disease endemic in tropical Africa and Latin America and is transmitted through infected mosquitoes. The earliest outbreak of yellow fever in Nigeria was reported in Lagos in 1864 with subsequent regular outbreaks reported until 1996. A large epidemic of yellow fever occurred in Oyo State in April and May 1987 following an epidemic of sylvatic yellow fever in Eastern Nigeria the previous year. For 21 years, no further confirmed cases were reported until September 2017 following which Nigeria has been responding to successive outbreaks. The renewed onset of yellow fever outbreaks in Nigeria followed a global trend of reports and from other African countries. Yellow Fever disease has no cure, but control is through vaccination and vector control. Eliminating Yellow fever Epidemic (EYE) strategy to improve high-risk countries’ prevention, preparedness, detection, management, and response to yellow fever outbreaks was developed by the WHO in 2017 and launched in Nigeria in April 2018. Yet, poor vaccination coverage continues to be a cause for concern. Materials and methods We conducted a retrospective cross-sectional study that examines the resurgence of Yellow fever cases and outbreaks from 2013 to 2020 in Oyo State, Nigeria. The Yellow Fever data for both surveillance and routine Expanded Programme on Immunization (EPI) were the focus of the review. Surveillance data were retrieved from the State’s database reported by all 33 LGAs, maintained by the State and supported by the World Health Organization at the Zonal and State levels. The routine EPI data were retrieved from District Health Information Software (DHIS_2). The proportion of LGAs reporting at least one case of suspected yellow fever with a blood specimen and the number of suspected cases reported for each year within the period under review was measured. We also assessed the trend of confirmed cases and the incidence per 100,000 persons. Also, suspected cases of yellow fever were categorized into four age groups and their vaccination status was assessed. The State’s annual administrative routine vaccination coverage for yellow fever vaccine was compared with the number of confirmed cases for each year. Results The proportion of LGAs reporting at least a case of suspected yellow fever, with blood samples collected, ranged from 6.1 to 84.9% between 2014 and 2020 while a total of 9 confirmed (8 cases) and probable (1 case) cases of yellow fever were recorded. However, there were no confirmed cases from the year 2013 to 2016, including 2018 but an upward trend of incidence of the disease per 100,000 persons from 0% to 2013 through 2018, to 3.5% in 2019, and then to 5.6% in 2020 was observed. 93 of 240 (39%) suspected yellow fever cases reported during the given period were observed to have received yellow fever vaccine. Conclusions In conclusion, the increase in the circulation of the yellow fever virus in the state reiterates the state is at a high risk of yellow fever transmission and underlines the need for viable interventions such as environmental hygiene to rid the environment of the disease vector’s ecological niche and improving routine EPI coverage to provide population immunity.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference16 articles.

1. World Health Organization. 2021. Yellow Fever. 2021. Accessed 19 May 2021. (Internet). Available from https://www.who.int/news-room/fact-sheets/detail/yellow-fever

2. Tomashek KM, Challberg M, Nayak SU, Schiltz HF. Disease resurgence, production capability issues, and safety concerns in the context of an aging population: Is there a need for a new yellow fever vaccine? Vaccines (Basel). 2019; 8;7 (4):179. https://doi.org/10.3390/vaccines7040179. PMID: 31717289; PMCID: PMC6963298.

3. Abdulkadir B, Dazy DB, Abubakar MA, Farida AT, Samira IG, Aladelokun JD, et al. Current Trends of yellow fever in Nigeria: Challenges and prospects. UMYU J Microbiol Res (UJMR). 2020;4:64–9. https://doi.org/10.47430/ujmr.1942.011.

4. Umar K, Anka AU, Abdullahi IN, Emeribe AU, Babayo A, Adekola HA, et al. The Interplay between epigenetics, vector competence, and vaccine immunodynamics as a possible explanation for recent yellow fever resurgence in Nigeria. African J Health Sci. 2019; 32(5). eISSN: 1022-9272

5. World Health Organization. Regional Office for the Eastern Mediterranean. Factsheet Yellow Fever. 2014. (Internet). Available from: http://apps.who.int/iris/handle/10665/204192.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3