Age-specific transmission dynamics under suppression control measures during SARS-CoV-2 Omicron BA.2 epidemic

Author:

Zhu Wenlong,Wen Zexuan,Chen Yue,Gong Xiaohuan,Zheng Bo,Liang Xueyao,Xu Ao,Yao Ye,Wang Weibing

Abstract

Abstract Background From March to June 2022, an Omicron BA.2 epidemic occurred in Shanghai. We aimed to better understand the transmission dynamics and identify age-specific transmission characteristics for the epidemic. Methods Data on COVID-19 cases were collected from the Shanghai Municipal Health Commission during the period from 20th February to 1st June. The effective reproductive number (Rt) and transmission distance between cases were calculated. An age-structured SEIR model with social contact patterns was developed to reconstruct the transmission dynamics and evaluate age-specific transmission characteristics. Least square method was used to calibrate the model. Basic reproduction number (R0) was estimated with next generation matrix. Results R0 of Omicron variant was 7.9 (95% CI: 7.4 to 8.4). With strict interventions, Rt had dropped quickly from 3.6 (95% CI: 2.7 to 4.7) on 4th March to below 1 on 18th April. The mean transmission distance of the Omicron epidemic in Shanghai was 13.4 km (95% CI: 11.1 to 15.8 km), which was threefold longer compared with that of epidemic caused by the wild-type virus in Wuhan, China. The model estimated that there would have been a total 870,845 (95% CI: 815,400 to 926,289) cases for the epidemic from 20th February to 15th June, and 27.7% (95% CI: 24.4% to 30.9%) cases would have been unascertained. People aged 50–59 years had the highest transmission risk 0.216 (95% CI: 0.210 to 0.222), and the highest secondary attack rate (47.62%, 95% CI: 38.71% to 56.53%). Conclusions The Omicron variant spread more quickly and widely than other variants and resulted in about one third cases unascertained for the recent outbreak in Shanghai. Prioritizing isolation and screening of people aged 40–59 might suppress the epidemic more effectively. Routine surveillance among people aged 40–59 years could also provide insight into the stage of the epidemic and the timely detection of new variants. Trial registration We did not involve clinical trial.

Funder

Shanghai Science and Technology Committee

Shanghai Municipal Health Commission

Bill and Melinda Gates Foundation

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3