Author:
Kipourou Dimitra-Kleio,Leyrat Clémence,Alsheridah Nourah,Almazeedi Sulaiman,Al-Youha Sarah,Jamal Mohammad H.,Al-Haddad Mohannad,Al-Sabah Salman,Rachet Bernard,Belot Aurélien
Abstract
Abstract
Background
Subsequent epidemic waves have already emerged in many countries and in the absence of highly effective preventive and curative options, the role of patient characteristics on the development of outcomes needs to be thoroughly examined, especially in middle-east countries where such epidemiological studies are lacking. There is a huge pressure on the hospital services and in particular, on the Intensive Care Units (ICU). Describing the need for critical care as well as the chance of being discharged from hospital according to patient characteristics, is essential for a more efficient hospital management. The objective of this study is to describe the probabilities of admission to the ICU and the probabilities of hospital discharge among positive COVID-19 patients according to demographics and comorbidities recorded at hospital admission.
Methods
A prospective cohort study of all patients with COVID-19 found in the Electronic Medical Records of Jaber Al-Ahmad Al-Sabah Hospital in Kuwait was conducted. The study included 3995 individuals (symptomatic and asymptomatic) of all ages who tested positive from February 24th to May 27th, 2020, out of which 315 were treated in the ICU and 3619 were discharged including those who were transferred to a different healthcare unit without having previously entered the ICU. A competing risk analysis considering two events, namely, ICU admission and hospital discharge using flexible hazard models was performed to describe the association between event-specific probabilities and patient characteristics.
Results
Results showed that being male, increasing age and comorbidities such as chronic kidney disease (CKD), asthma or chronic obstructive pulmonary disease and weakened immune system increased the risk of ICU admission within 10 days of entering the hospital. CKD and weakened immune system decreased the probabilities of discharge in both females and males however, the age-related pattern differed by gender. Diabetes, which was the most prevalent comorbid condition, had only a moderate impact on both probabilities (18% overall) in contrast to CKD which had the largest effect, but presented only in 7% of those admitted to ICU and in 1% of those who got discharged. For instance, within 5 days a 50-year-old male had 19% (95% C.I.: [15,23]) probability of entering the ICU if he had none of these comorbidities, yet this risk jumped to 31% (95% C.I.: [20,46]) if he had also CKD, and to 27% in the presence of asthma/COPD (95% C.I.: [19,36]) or of weakened immune system (95% C.I.: [16,42]).
Conclusions
This study provides useful insight in describing the probabilities of ICU admission and hospital discharge according to age, gender, and comorbidities among confirmed COVID-19 cases in Kuwait. A web-tool is also provided to allow the user to estimate these probabilities for any combination of these covariates. These probabilities enable deeper understanding of the hospital demand according to patient characteristics which is essential to hospital management and useful for developing a vaccination strategy.
Funder
Cancer Research UK
Kuwait Foundation for the Advancement of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference40 articles.
1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497–506.
2. World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020. (Accessed 29 Oct 2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
3. Van Damme W, Dahake R, Delamou A, Ingelbeen B, Wouters E, Vanham G, Van De Pas R, Dossou J-P, Ir P, Abimbola S, et al. The COVID-19 pandemic: diverse contexts; different epidemics–how and why?BMJ Global Health. 2020; 5(7):e003098.
4. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265–9.
5. World Health Organization. Timeline: WHO’s COVID-19 response. 2020. (Accessed 29 Oct 2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#event-42.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献