Estimating helmet wearing rates via a scalable, low-cost algorithm: a novel integration of deep learning and google street view

Author:

Li Qingfeng,Wang Xianglong,Bachani Abdulgafoor M.

Abstract

Abstract Introduction Wearing a helmet reduces the risk of head injuries substantially in the event of a motorcycle crash. Countries around the world are committed to promoting helmet use, but the progress has been slow and uneven. There is an urgent need for large-scale data collection for situation assessment and intervention evaluation. Methods This study proposes a scalable, low-cost algorithm to estimate helmet-wearing rates. Applying the state-of-the-art deep learning technique for object detection to images acquired from Google Street View, the algorithm has the potential to provide accurate estimates at the global level. Results Trained on a sample of 3995 images, the algorithm achieved high accuracy. The out-of-sample prediction results for all three object classes (helmets, drivers, and passengers) reveal a precision of 0.927, a recall value of 0.922, and a mean average precision at 50 (mAP50) of 0.956. Discussion The remarkable model performance suggests the algorithm’s capacity to generate accurate estimates of helmet-wearing rates from an image source with global coverage. The significant enhancement in the availability of helmet usage data resulting from this approach could bolster progress tracking and facilitate evidence-based policymaking for helmet wearing globally.

Funder

Bloomberg Philanthropies

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3