Population migration, spread of COVID-19, and epidemic prevention and control: empirical evidence from China
-
Published:2021-03-17
Issue:1
Volume:21
Page:
-
ISSN:1471-2458
-
Container-title:BMC Public Health
-
language:en
-
Short-container-title:BMC Public Health
Author:
Hu ZhenORCID, Wu Yuanyang, Su Mohan, Xie Lin, Zhang Anqi, Lin Xueyu, Nie Yafeng
Abstract
Abstract
Background
This study applied the susceptible-exposed-infectious-removed (SEIR) model to analyze and simulate the transmission mechanisms of the coronavirus disease 2019 (COVID-19) in China.
Methods
The population migration was embedded in the SEIR model to simulate and analyze the effects of the amount of population inflow on the number of confirmed cases. Based on numerical simulations, this study used statistical data for the empirical validation of its theoretical deductions and discussed how to improve the effectiveness of epidemic prevention and control considering population migration variables. Statistics regarding the numbers of infected people in various provinces were obtained from the epidemic-related data reported by China’s National Health Commission.
Results
This study explored how the epidemic should be prevented and controlled from the perspective of population migration variables. It found that the combination of a susceptible population, an infected population, and transmission media were important routes affecting the number of infections and that the migration of a Hubei-related infected population played a key role in promoting epidemic spread. Epidemic prevention and control should focus on regions with better economic conditions than the epidemic region. Prevention and control efforts should focus on the more populated neighboring provinces having convenient transportation links with the epidemic region. To prevent and control epidemic spread, priority should be given to elucidating the destinations and directions of population migration from the domestic origin of infections, and then controlling population migration or human-to-human contact after such migration.
Conclusions
This study enriched and expanded on simulations of the effects of population migration on the COVID-19 epidemic and China-based empirical studies while offering an epidemic evaluation and warning mechanism to prevent and control similar public health emergencies in the future.
Funder
Humanities and Social Sciences Fund of the Ministry of Education China China Postdoctoral Science Foundation Social Science Foundation of Shaanxi Province Project Funding of Innovation and Entrepreneurship Training Program for College Students of Zhongnan University of Economics and Law
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference37 articles.
1. Huang CL, Wang YM, Li XW, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J]. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5. 2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China [J]. N Engl J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032. 3. Li Q, Guan XH, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China of novel coronavirus–infected pneumonia [J]. N Engl J Med. 2020;382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316. 4. Wang G, Jin X. The progress of 2019 novel coronavirus event in China [J]. J Med Virol. 2020;92(5):468–72. https://doi.org/10.1002/jmv.25705. 5. Chen T, Rui J, Wang Q, et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus [J]. Infect Dis Poverty. 2020;9(1):24. https://doi.org/10.1186/s40249-020-00640-3.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|