Author:
Sun Xue-Ying,Ma Ru-Lin,He Jia,Ding Yu-Song,Rui Dong-Sheng,Li Yu,Yan Yi-Zhong,Mao Yi-Dan,Liao Sheng-Yu,He Xin,Guo Shu-Xia,Guo Heng
Abstract
Abstract
Purpose
To explore the association between waist circumference (WC), estimated cardiopulmonary function (eCRF), and cardiovascular disease (CVD) risk in southern Xinjiang. Update the Framingham model to make it more suitable for the southern Xinjiang population.
Methods
Data were collected from 7705 subjects aged 30–74 years old in Tumushuke City, the 51st Regiment of Xinjiang Production and Construction Corps. CVD was defined as an individual's first diagnosis of non-fatal acute myocardial infarction, death from coronary heart disease, and fatal or non-fatal stroke. The Cox proportional hazards regression analysis was used to analyze the association between WC, eCRF and CVD risk. Restricted cubic spline plots were drawn to describe the association of the two indicators with CVD risk. We update the model by incorporating the new variables into the Framingham model and re-estimating the coefficients. The discrimination of the model is evaluated using AUC, NRI, and IDI metrics. Model calibration is evaluated using pseudo R2 values.
Results
WC was an independent risk factor for CVD (multivariate HR: 1.603 (1.323, 1.942)), eCRF was an independent protective factor for CVD (multivariate HR: 0.499 (0.369, 0.674)). There was a nonlinear relationship between WC and CVD risk (nonlinear χ2 = 12.43, P = 0.002). There was a linear association between eCRF and CVD risk (non-linear χ2 = 0.27, P = 0.6027). In the male, the best risk prediction effect was obtained when WC and eCRF were added to the model (AUC = 0.763((0.734,0.792)); pseudo R2 = 0.069). In the female, the best risk prediction effect was obtained by adding eCRF to the model (AUC = 0.757 (0.734,0.779); pseudo R2 = 0.107).
Conclusion
In southern Xinjiang, WC is an independent risk factor for CVD. eCRF is an independent protective factor for CVD. We recommended adding WC and eCRF in the male model and only eCRF in the female model for better risk prediction.
Funder
the Science and Technology Project of Xinjiang Production and Construction Corps
Innovative Development Project of Shihezi University
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference32 articles.
1. Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021.
2. The Writing Committee of the Report on Cardiovascular Health and Diseases in China, Summary of China Cardiovascular Health and Disease Report 2020. Zhong Guo Xun Huan Za Zhi 2021;36(06):521-45.
3. Kondamudi N, Mehta A, Thangada ND, Pandey A. Physical Activity and Cardiorespiratory Fitness: Vital Signs for Cardiovascular Risk Assessment. Curr Cardiol Rep. 2021;23(11):172.
4. Fan M, Sun D, Zhou T, et al. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur Heart J. 2020;41(11):1182–9.
5. D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献