Sex and population differences in the cardiometabolic continuum: a machine learning study using the UK Biobank and ELSA-Brasil cohorts

Author:

Paula Daniela Polessa,Camacho Marina,Barbosa Odaleia,Marques Larissa,Harter Griep Rosane,da Fonseca Maria Jesus Mendes,Barreto Sandhi,Lekadir Karim

Abstract

Abstract Background The temporal relationships across cardiometabolic diseases (CMDs) were recently conceptualized as the cardiometabolic continuum (CMC), sequence of cardiovascular events that stem from gene-environmental interactions, unhealthy lifestyle influences, and metabolic diseases such as diabetes, and hypertension. While the physiological pathways linking metabolic and cardiovascular diseases have been investigated, the study of the sex and population differences in the CMC have still not been described. Methods We present a machine learning approach to model the CMC and investigate sex and population differences in two distinct cohorts: the UK Biobank (17,700 participants) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) (7162 participants). We consider the following CMDs: hypertension (Hyp), diabetes (DM), heart diseases (HD: angina, myocardial infarction, or heart failure), and stroke (STK). For the identification of the CMC patterns, individual trajectories with the time of disease occurrence were clustered using k-means. Based on clinical, sociodemographic, and lifestyle characteristics, we built multiclass random forest classifiers and used the SHAP methodology to evaluate feature importance. Results Five CMC patterns were identified across both sexes and cohorts: EarlyHyp, FirstDM, FirstHD, Healthy, and LateHyp, named according to prevalence and disease occurrence time that depicted around 95%, 78%, 75%, 88% and 99% of individuals, respectively. Within the UK Biobank, more women were classified in the Healthy cluster and more men in all others. In the EarlyHyp and LateHyp clusters, isolated hypertension occurred earlier among women. Smoking habits and education had high importance and clear directionality for both sexes. For ELSA-Brasil, more men were classified in the Healthy cluster and more women in the FirstDM. The diabetes occurrence time when followed by hypertension was lower among women. Education and ethnicity had high importance and clear directionality for women, while for men these features were smoking, alcohol, and coffee consumption. Conclusions There are clear sex differences in the CMC that varied across the UK and Brazilian cohorts. In particular, disadvantages regarding incidence and the time to onset of diseases were more pronounced in Brazil, against woman. The results show the need to strengthen public health policies to prevent and control the time course of CMD, with an emphasis on women.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3