Identifying long-term effects of SARS-CoV-2 and their association with social determinants of health in a cohort of over one million COVID-19 survivors

Author:

Mukherjee Sumit,Kshirsagar Meghana,Becker Nicholas,Xu Yixi,Weeks William B.,Patel Shwetak,Ferres Juan Lavista,Jackson Michael L.

Abstract

Abstract Background Despite an abundance of information on the risk factors of SARS-CoV-2, there have been few US-wide studies of long-term effects. In this paper we analyzed a large medical claims database of US based individuals to identify common long-term effects as well as their associations with various social and medical risk factors. Methods The medical claims database was obtained from a prominent US based claims data processing company, namely Change Healthcare. In addition to the claims data, the dataset also consisted of various social determinants of health such as race, income, education level and veteran status of the individuals. A self-controlled cohort design (SCCD) observational study was performed to identify ICD-10 codes whose proportion was significantly increased in the outcome period compared to the control period to identify significant long-term effects. A logistic regression-based association analysis was then performed between identified long-term effects and social determinants of health. Results Among the over 1.37 million COVID patients in our datasets we found 36 out of 1724 3-digit ICD-10 codes to be statistically significantly increased in the post-COVID period (p-value < 0.05). We also found one combination of ICD-10 codes, corresponding to ‘other anemias’ and ‘hypertension’, that was statistically significantly increased in the post-COVID period (p-value < 0.05). Our logistic regression-based association analysis with social determinants of health variables, after adjusting for comorbidities and prior conditions, showed that age and gender were significantly associated with the multiple long-term effects. Race was only associated with ‘other sepsis’, income was only associated with ‘Alopecia areata’ (autoimmune disease causing hair loss), while education level was only associated with ‘Maternal infectious and parasitic diseases’ (p-value < 0.05). Conclusion We identified several long-term effects of SARS-CoV-2 through a self-controlled study on a cohort of over one million patients. Furthermore, we found that while age and gender are commonly associated with the long-term effects, other social determinants of health such as race, income and education levels have rare or no significant associations.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference26 articles.

1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Johns Hopkins University, 2020. (Accessed 27 April 2020, 2020, at https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.)

2. Kakodkar P, Kaka N, Baig MN. A comprehensive literature review on the clinical presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus. 2020;12:e7560.

3. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. Clin Immunol. 2020;215:108427.

4. Akbarialiabad H, Taghrir MH, Abdollahi A, Ghahramani N, Kumar M, Paydar S, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49(6):1163–86.

5. Berenguera A, Jacques-Aviñó C, Medina-Perucha L, Puente D. Long term consequences of COVID-19. Eur J of Intern Med. 2021;92:34.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3