Community screening for dementia among older adults in China: a machine learning-based strategy

Author:

Zhang Yan,Xu Jian,Zhang Chi,Zhang Xu,Yuan Xueli,Ni Wenqing,Zhang Hongmin,Zheng Yijin,Zhao Zhiguang

Abstract

Abstract Background Dementia is a leading cause of disability in people older than 65 years worldwide. However, diagnosing dementia in its earliest symptomatic stages remains challenging. This study combined specific questions from the AD8 scale with comprehensive health-related characteristics, and used machine learning (ML) to construct diagnostic models of cognitive impairment (CI). Methods The study was based on the Shenzhen Healthy Ageing Research (SHARE) project, and we recruited 823 participants aged 65 years and older, who completed a comprehensive health assessment and cognitive function assessments. Permutation importance was used to select features. Five ML models using BalanceCascade were applied to predict CI: a support vector machine (SVM), multilayer perceptron (MLP), AdaBoost, gradient boosting decision tree (GBDT), and logistic regression (LR). An AD8 score ≥ 2 was used to define CI as a baseline. SHapley Additive exPlanations (SHAP) values were used to interpret the results of ML models. Results The first and sixth items of AD8, platelets, waist circumference, body mass index, carcinoembryonic antigens, age, serum uric acid, white blood cells, abnormal electrocardiogram, heart rate, and sex were selected as predictive features. Compared to the baseline (AUC = 0.65), the MLP showed the highest performance (AUC: 0.83 ± 0.04), followed by AdaBoost (AUC: 0.80 ± 0.04), SVM (AUC: 0.78 ± 0.04), GBDT (0.76 ± 0.04). Furthermore, the accuracy, sensitivity and specificity of four ML models were higher than the baseline. SHAP summary plots based on MLP showed the most influential feature on model decision for positive CI prediction was female sex, followed by older age and lower waist circumference. Conclusions The diagnostic models of CI applying ML, especially the MLP, were substantially more effective than the traditional AD8 scale with a score of ≥ 2 points. Our findings may provide new ideas for community dementia screening and to promote such screening while minimizing medical and health resources.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3