Author:
Gouspillou Gilles,Picard Martin,Godin Richard,Burelle Yan,Hepple Russell T
Abstract
Abstract
Aging-related loss of muscle mass, a biological process named sarcopenia, contributes to mobility impairment, falls, and physical frailty, resulting in an impaired quality of life in older people. In view of the aging of our society, understanding the underlying mechanisms of sarcopenia is a major health-care imperative. Evidence obtained from human and rodent studies demonstrates that skeletal muscle denervation/reinnervation cycles occur with aging, and that progressive failure of myofiber reinnervation is a major cause of the accelerating phase of sarcopenia in advanced age. However, the mechanisms responsible for the loss of myofiber innervation with aging remain unknown. The two major strategies that counteract sarcopenia, that is, caloric restriction and endurance training, are well known to protect neuromuscular junction (NMJ) integrity, albeit through undefined mechanisms. Interestingly, both of these interventions better preserve PGC-1α expression with aging, a transcriptional coactivator which has recently been shown to regulate key proteins involved in maintaining NMJ integrity. We therefore propose that the aging-related decline in PGC-1α may be a central mechanism promoting instability of the NMJ and consequently, aging-related alterations of myofiber innervation in sarcopenia. Similarly, the promotion of PGC-1α expression by both caloric restriction and exercise training may be fundamental to their protective benefits for aging muscle by better preserving NMJ integrity.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Economics and Econometrics,Media Technology,Forestry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献