Construction and validation of immune-related LncRNAs classifier to predict prognosis and immunotherapy response in laryngeal squamous cell carcinoma

Author:

Wang Xiaofeng,Pan Ya,Ou Yangpeng,Duan Tingting,Zou Yuxia,Zhou Xuejun

Abstract

Abstract Background Rapid advances in transcriptomic profiles have resulted in recognizing IRLs (immune-related long noncoding RNAs), as modulators of the expression of genes related to immune cells that mediate immune inhibition as well as immune stimulatory, indicating LncRNAs play fundamental roles in immune modulation. Hence, we establish an IRL classifier to precisely predict prognosis and immunotherapeutic efficiency in laryngeal squamous cell carcinoma (LSCC). Methods LSCC RNA-seq (RNA sequencing) datasets, somatic mutation data, and corresponding clinicopathologic information were acquired from TCGA (the Cancer Genome Atlas) and Gene Expression Omnibus (GEO) databases. Spearman correlation analysis identified LncRNAs associated with immune-related genes (IRG). Based on Lasso penalized regression and random forest (RF), we constructed an IRL classifier associated with prognosis. GEO database was utilized to validate the IRL classifier. The predictive precision and clinical application of the IRL classifier were assessed and compared to clinicopathologic features. The immune cell infiltration of LSCC was calculated via CIBERSORTx tools and ssGSEA (single-sample gene set enrichment analysis). Then, we systematically correlated the IRL classifier with immunological characteristics from multiple perspectives, such as immune-related cells infiltrating, tumor microenvironment (TME) scoring, microsatellite instability (MSI), tumor mutation burden (TMB), and chemokines. Finally, the TIDE (tumor immune dysfunction and exclusion) algorithm was used to predict response to immunotherapy. Results Based on machine learning approach, three prognosis-related IRLs (BARX1-DT, KLHL7-DT, and LINC02154) were selected to build an IRL classifier. The IRL classifier could availably classify patients into the low-risk and high-risk groups based on the different endpoints, including recurrence-free survival (RFS) and overall survival (OS). In terms of predictive ability and clinical utility, the IRL classifier was superior to other clinical characteristics. Encouragingly, similar results were observed in the GEO databases. Immune infiltration analysis displayed immune cells that are significantly richer in low-risk group, CD8 T cells and activated NK cells via CIBERSORTx algorithm as well as activated CD8 T cell via ssGSEA. Additionally, compared with the high-risk group, immune score, CD8 T effector was higher in the low-risk group, yet stromal score, score of p53 signaling pathway and TGFher in the Tx algorithm, was lower in the low-risk group. Corresponding results were confirmed in GEO dataset. Finally, TIDE analysis uncovered that the IRL classifier may be effectually predict the clinical response of immunotherapy in LSCC. Conclusion Based on BARX1-DT, KLHL7-DT, and LINC02154, the IRL classifier was established, which can be used to predict the prognosis, immune infiltration status, and immunotherapy response in LSCC patients and might facilitate personalized counseling for immunotherapy.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3