Author:
Kadkhoda Sepideh,Taslimi Reza,Noorbakhsh Farshid,Darbeheshti Farzaneh,Bazzaz Javad Tavakkoly,Ghafouri-Fard Soudeh,Shakoori Abbas
Abstract
Abstract
Introduction
Colorectal cancer (CRC) is one of the most frequent neoplasms in the world. Based on the emerging role of noncoding RNAs, particularly circular RNAs in pathogenesis of cancers, we designed this study to inspect the expression levels of a circ0009910-mediated regulatory pathway in colorectal cancer.
Methods
After bioinformatics analyses and construction of putative circ0009910/ miR-145-5p/PEAK1 pathway, the expression levels of these components were evaluated in 50 CRC tissues and adjacent specimens by quantitative real-time PCR. Moreover, we appraised the correlation coefficients between these transcripts and calculated the correlation between circ0009910 expression levels with clinicopathological features of patients.
Results
Circ0009910 and PEAK1 were significantly upregulated, while miR-145-5p was decreased in CRC samples compared with adjacent tissues (p < 0.05). Moreover, statistically significant correlations were observed between expression levels of circ0009910, miR-145-5p, and PEAK1. We also reported considerable correlations between circ0009910 expression and clinicopathological parameters including sex and perineural invasion. Finally, ROC curve analysis showed circ0009910 level as a discriminative biomarker for CRC.
Conclusion
For the first time, we could introduce circ0009910 as an important biomarker in CRC. Collectively, this investigation helped us to identify a newly diagnosed pathway in CRC that can be a potential axis for designing effective drugs for treatment of CRC patients.
Funder
tehran university of medical sciences and health services
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Gustavsson B, Carlsson G, Machover D, Petrelli N, Roth A, Schmoll HJ, et al. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer. 2015;14(1):1–10. PubMed PMID: 25579803. Epub 2015/01/13. eng. https://doi.org/10.1016/j.clcc.2014.11.002.
2. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1(1):15065. PubMed PMID: 2789416. Pubmed Central PMCID: Pmc4874655. Epub 2015/01/01. eng,. https://doi.org/10.1038/nrdp.2015.65.
3. Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, et al. Genetic risk score, combined lifestyle factors and risk of colorectal cancer. Cancer Res Treat. 2019;51(3):1033–40 PubMed PMID: 30336659. Epub 10/18. eng.
4. Dolatkhah R, Somi MH, Kermani IA, Ghojazadeh M, Jafarabadi MA, Farassati F, et al. Increased colorectal cancer incidence in Iran: a systematic review and meta-analysis. BMC public health. 2015;15(1):1–14.
5. Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel). 2018;6(2):31 PubMed PMID: 29652830. eng.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献