Identification and verification of HCAR3 and INSL5 as new potential therapeutic targets of colorectal cancer

Author:

Yang Xuan,Wei Wangao,Tan Shisheng,Guo Linrui,Qiao Song,Yao Biao,Wang ZiORCID

Abstract

Abstract Background Colorectal cancer (CRC) is one of the most common cancers of the gastrointestinal tract and ranks third in cancer-related deaths worldwide. This study was conducted to identify novel biomarkers related to the pathogenesis of CRC based upon a bioinformatics analysis, and further verify the biomarkers in clinical tumor samples and CRC cell lines. Methods A series of bioinformatics analyses were performed using datasets from NCBI-GEO and constructed a protein–protein interaction (PPI) network. This analysis enabled the identification of Hub genes, for which the mRNA expression and overall survival of CRC patients data distribution was explored in The Cancer Genome Atlas (TCGA) colon cancer and rectal cancer (COADREAD) database. Furthermore, the differential expression of HCAR3 and INLS5 was validated in clinical tumor samples by Real-time quantitative PCR analysis, western blotting analysis, and immunohistochemistry analysis. Finally, CRC cells over-expressing INSL5 were constructed and used for CCK8, cell cycle, and cell apoptosis validation assays in vitro. Results A total of 286 differentially expressed genes (DEGs) were screened, including 64 genes with increased expression and 143 genes with decreased expression in 2 CRC database, from which 10 key genes were identified: CXCL1, HCAR3, CXCL6, CXCL8, CXCL2, CXCL5, PPY, SST, INSL5, and NPY1R. Among these genes, HCAR3 and INSL5 had not previously been explored and were further verified in vitro. Conclusions HCAR3 expression was higher in CRC tissues and associated with better overall survival of CRC patients. INSL5 expression in normal tissue was higher than that in tumor tissue and its high expression was associated with a better prognosis for CRC. The overexpression of INSL5 significantly inhibited the proliferation and promoted the shearing of PARP of CRC cells. This integrated bioinformatics study presented 10 key hub genes associated with CRC. HCAR3 and INSL5 were expressed in tumor tissue and these were associated with poor survival and warrant further studies as potential therapeutic targets.

Funder

the Guizhou Innovation and Entrepreneurship Foundation for High-level Overseas Talent

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3