Effects of EFNA1 on cell phenotype and prognosis of esophageal carcinoma

Author:

Zhang Yongqiang,Zhang Jinning,Pan Guanlong,Guan Tianhao,Zhang Changhao,Hao An,Li Yan,Ren Hai

Abstract

Abstract Background To investigate the expression and clinical significance of EFNA1 in broad-spectrum tumors, and to evaluate its relationship with prognosis and biological functions of esophageal carcinoma (ESCA). Methods EFNA1 expression in various cancers was analyzed according to the data in the TCGA database. The clinical data were integrated, to analyze the relationship with ESCA clinical parameters and prognosis, and EFNA1 expression in ESCA tissue samples was detected by immunohistochemistry (IHC). Based on bioinformatics, the functional background of EFNA1 overexpression was analyzed. EFNA1 knockout cell model was established by EFNA1-shRNA transfecting ESCA cells, and the effect of knocking down EFNA1 on the proliferation of ESCA cells was detected by MTT. Results Among 7563 samples from TCGA, the EFNA1 gene highly expressed in 15 samples with common cancers and endangered the prognosis of patients with tumors. Its overexpression in ESCA and its influence on the prognosis were most significant. EFNA1 expression in 80 samples with ESCA and their paired samples was tested by IHC to verify its high expression (paired t test, P < 0.001) in ESCA tissues. It was found that EFNA1 expression was related to clinical factors (TNM staging, P = 0.031; lymph node metastasis, P = 0.043; infiltration, P = 0.016). Meanwhile, EFNA1 was found to be an independent risk factor based on the COX multi-factor analysis. And to further explore the importance of EFNA1 in tumors, EC-9706 and ECA109 cells were screened from 8 ESCA-related cell lines to build EFNA1 knockdown cell models. The results showed that EFNA1 knockdown significantly inhibited the proliferation of tumor cells (P < 0.05). In terms of molecular mechanism, EFNA1 related genes were significantly enriched in the proliferative pathway according to the pathway enrichment analysis. It was found that knocking down EFNA1 did inhibit cell proliferation based on cell experiments. Conclusions EFNA1 overexpression in ESCA tissue is related to the prognosis of patients. Knocking down EFNA1 can significantly inhibit the proliferation of ESCA cells.

Funder

Qiqihar City Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3