Hypoxia-induced lncRNA MRVI1-AS1 accelerates hepatocellular carcinoma progression by recruiting RNA-binding protein CELF2 to stabilize SKA1 mRNA

Author:

Tuo Hang,Liu Runkun,Wang Yufeng,Yang Wei,Liu Qingguang

Abstract

Abstract Background Long non-coding RNAs (lncRNAs) perform a vital role during the progression of hepatocellular carcinoma (HCC). Here, we aimed to identify a novel lncRNA involved in HCC development and elucidate the underlying molecular mechanism. Methods The RT-qPCR and TCGA dataset analysis were applied to explore the expressions of MRVI1-AS1 in HCC tissues and cell lines. Statistical analysis was applied to analyze the clinical significance of MRVI1-AS1 in HCC. The functions of MRVI1-AS1 in HCC cells metastasis and growth were explored by transwell assays, wound healing assay, MTT assay, EdU assay, the intravenous transplantation tumor model, and the subcutaneous xenograft tumor model. Microarray mRNA expression analysis, dual luciferase assays, and actinomycin D treatment were used to explore the downstream target of MRVI1-AS1 in HCC cells. RIP assay was applied to assess the direct interactions between CELF2 and MRVI1-AS1 or SKA1 mRNA. Rescue experiments were employed to validate the functional effects of MRVI1-AS1, CELF2, and SKA1 on HCC cells. Results MRVI1-AS1 was found to be dramatically upregulated in HCC and the expression was strongly linked to tumor size, venous infiltration, TNM stage, as well as HCC patients’ outcome. Cytological experiments and animal experiments showed that MRVI1-AS1 promoted HCC cells metastasis and growth. Furthermore, SKA1 was identified as the downstream targeted mRNA of MRVI1-AS1 in HCC cells, and MRVI1-AS1 increased SKA1 expression by recruiting CELF2 protein to stabilize SKA1 mRNA. In addition, we found that MRVI1-AS1 expression was stimulated by hypoxia through a HIF-1-dependent manner, which meant that MRVI1-AS was a direct downstream target gene of HIF-1 in HCC. Conclusion In a word, our findings elucidated that hypoxia-induced MRVI1-AS1 promotes metastasis and growth of HCC cells via recruiting CELF2 protein to stabilize SKA1 mRNA, pointing to MRVI1-AS1 as a promising clinical application target for HCC therapy.

Funder

National Natural Science Foundation of China

Natural Science basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3