HER3 (ERBB3) amplification in liposarcoma - a putative new therapeutic target?

Author:

Becker Ann-Katharina,Puladi Behrus,Xie Kunpeng,Cassataro Angela,Götzl Rebekka,Hölzle Frank,Beier Justus P.,Knüchel-Clarke Ruth,Braunschweig Till

Abstract

Abstract Background Liposarcomas are among the most common mesenchymal malignancies. However, the therapeutic options are still very limited and so far, targeted therapies had not yet been established. Immunotherapy, which has been a breakthrough in other oncological entities, seems to have no efficacy in liposarcoma. Complicating matters further, classification remains difficult due to the diversity of morphologies and nonspecific or absent markers in immunohistochemistry, leaving molecular pathology using FISH or sequencing as best options. Many liposarcomas harbor MDM2 gene amplifications. In close relation to the gene locus of MDM2, HER3 (ERBB3) gene is present and co-amplification could occur. Since the group of HER/EGFR receptor tyrosine kinases and its inhibitors/antibodies play a role in a broad spectrum of oncological diseases and treatments, and some HER3 inhibitors/antibodies are already under clinical investigation, we hypothesized that in case of HER3 co-amplifications a tumor might bear a further potential therapeutic target. Methods We performed FISH analysis (MDM2, DDIT3, HER3) in 56 archived cases and subsequently performed reclassification to confirm the diagnosis of liposarcoma. Results Next to 16 out of 56 cases needed to be re-classified, in 20 out of 54 cases, a cluster-amplification of HER3 could be detected, significantly correlating with MDM2 amplification. Our study shows that the entity of liposarcomas show specific molecular characteristics leading to reclassify archived cases by modern, established methodologies. Additionally, in 57.1% of these cases, HER3 was cluster-amplified profusely, presenting a putative therapeutic target for targeted therapy. Conclusion Our study serves as the initial basis for further investigation of the HER3 gene as a putative therapeutic target in liposarcoma.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3