Author:
Zhu Xiaoyu,Yuan Zile,Cheng Sheng,Wang Hongyi,Liao Yuxuan,Zhou Dawei,Wu Zhiqiang
Abstract
Abstract
Background
TIMM8A is a protein-coding gene located on the X chromosome. There is evidence that TIMM8A plays an important role in mitochondrial morphology and fission. Studies have shown that mitophagy and fission could affect the function of immune cells. However, there is currently no research on this gene’s role in cancer occurrence and progression.
Methods
TIMM8A expression was analyzed via the Tumor Immune Estimation Resource (TIMER) site and UALCAN database. We evaluated the influence of TIMM8A on clinical prognosis using Kaplan-Meier plotter, the PrognoScan database, and Human Protein Atlas (HPA). The correlations between TIMM8A and cancer immune infiltrates were investigated via TIMER. Tumor Immune Dysfunction and Exclusion (TIDE) was used to evaluate the potential of tumor immune evasion. Functions of TIMM8A mutations and 50 genes significantly associated with TIMM8A mutations in breast cancer (BRCA) and uterine corpus endometrial cancer (UCEC) were analyzed by GO and KEGG in LinkedOmics database.
Results
We investigated the role of TIMM8A in multiple cancers and found that it was significantly associated with poor prognosis in BRCA and UCEC. After analyzing the effect of TIMM8A on immune infiltration, we found Th2 CD4+ T cells might be a common pathway by which TIMM8A contributed to poor prognosis in BRCA and UCEC. Our results suggested that myeloid-derived suppressor cells (MDSC) and tumor-associated M2 macrophages (TAM M2) might be important factors in immune evasion through T cell rejection in both cancers, and considered TIMM8A as a biomarker to predict the efficacy of this therapy in BRCA and UCEC. The results of TIMM8A enrichment analysis showed us that abnormally expressed TIMM8A might affect the mitochondrial protein in BRCA and UCEC.
Conclusions
Contributed to illustrating the value of TIMM8A as a prognostic biomarker, our findings suggested that TIMM8A was correlated with prognosis and immune infiltration, including CD8+ T cells, Th2 CD4+ T cells, and macrophages in BRCA and UCEC. In addition, TIMM8A might affect immune infiltration and prognosis in BRCA and UCEC by affecting mitophagy. We believed it could also be a biomarker to predict the efficacy of anti-PD-L1 therapy and proposed to improve the efficacy by eliminating MDSC and TAM M2.
Funder
Provincial College Students Innovation Training Program of Central South University
Changsha Science and Technology Bureau Scientific Research Project
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.
2. Ahmad A. Breast cancer statistics: recent trends. Adv Exp Med Biol. 2019;1152:1–7.
3. Trojano G, Olivieri C, Tinelli R, Damiani GR, Pellegrino A, Cicinelli E. Conservative treatment in early stage endometrial cancer: a review. Acta Biomed. 2019;90:405–10.
4. Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018;18:556.
5. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121:3609–22.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献