HSDL2 knockdown promotes the progression of cholangiocarcinoma by inhibiting ferroptosis through the P53/SLC7A11 axis

Author:

Ma Shuoshuo,Ma Yang,Qi Feiyu,Lei Jiasheng,Chen Fangfang,Sun Wanliang,Wang Dongdong,Zhou Shuo,Liu Zhong,Lu Zheng,Zhang Dengyong

Abstract

Abstract Background Human hydroxysteroid dehydrogenase-like 2 (HSDL2), which regulates cancer progression, is involved in lipid metabolism. However, the role of HSDL2 in cholangiocarcinoma (CCA) and the mechanism by which it regulates CCA progression by modulating ferroptosis are unclear. Methods HSDL2 expression levels in CCA cells and tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The overall survival and disease-free survival of patients with high vs. low HSDL2 expression were evaluated using Kaplan-Meier curves. The proliferation, migration, and invasion of CCA cells were assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2′-deoxyuridine DNA synthesis, and transwell assays. The effect of p53 on tumor growth was explored using a xenograft mouse model. The expression of SLC7A11 in patients with CCA was analyzed using immunofluorescence. Ferroptosis levels were measured by flow cytometry, malondialdehyde assay, and glutathione assay. HSDL2-regulated signaling pathways were analyzed by transcriptome sequencing. The correlation between p53 and SLC7A11 was assessed using bioinformatics and luciferase reporter assays. Results HSDL2 expression was lower in primary human CCA tissues than in matched adjacent non-tumorous bile duct tissues. HSDL2 downregulation was a significant risk factor for shorter overall survival and disease-free survival in patients with CCA. In addition, HSDL2 knockdown enhanced the proliferation, migration, and invasion of CCA cells. The transcriptome analysis of HSDL2 knockdown cells showed that differentially expressed genes were significantly enriched in the p53 signaling pathway, and HSDL2 downregulation increased SLC7A11 levels. These findings were consistent with the qRT-PCR and western blotting results. Other experiments showed that p53 expression modulated the effect of HSDL2 on CCA proliferation in vivo and in vitro and that p53 bound to the SLC7A11 promoter to inhibit ferroptosis. Conclusions HSDL2 knockdown promotes CCA progression by inhibiting ferroptosis through the p53/SLC7A11 axis. Thus, HSDL2 is a potential prognostic marker and therapeutic target for CCA.

Funder

2021 Postgraduate Research Innovation Program of Bengbu Medical College

The Natural Science Foundation of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3