Circular RNA hsa_circ_0064559 affects tumor cell growth and progression of colorectal cancer

Author:

Zhen Ya’nan,Sun Guodong,Chen Cunbao,Li Jianqi,Xiao Ruixue,Xu Zhongfa

Abstract

Abstract Background Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally. It is essential to identify new CRC-associated therapeutic targets and diagnostic biomarkers. Previous studies have demonstrated that a series of circular RNAs (circRNAs) play a crucial role in CRC pathogenesis. This study assessed the potential of hsa_circ_0064559 in tumor cell growth and progression of CRC. Methods Six pairs of matched CRC and normal colorectal tissue samples were sequenced using the Affymetrix Clariom D array. Using RNA interference, the expression of thirteen circRNAs was knocked down in CRC cells. The proliferation of CRC cell lines (RKO and SW620 cells) was detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Apoptosis and cell cycle were determined by flow-cytometric analysis. An in vivo study uses nude mice to establish a CRC mouse model. The differentially expressed genes were analyzed using Affymetrix primeview human GeneChip array and verified by polymerase chain reaction. Results Affymetrix Clariom D array analysis revealed that thirteen circRNAs were upregulated in CRC. The proliferation of CRC cell lines was decreased, while the proportion of apoptotic and G1 phase cells was higher after hsa_circ_0064559 knockdown. In vivo xenograft nude mice model revealed that the volume and weight of the tumor were reduced by hsa_circ_0064559 knockdown. In Affymetrix primeview human GeneChip array, we found six upregulated genes (STAT1, ATF2, TNFRSF10B, TGFBR2, BAX, and SQSTM1) and two downregulated genes (SLC4A7 and CD274) related to apoptosis and proliferation of colorectal cancer cells after hsa_circ_0064559 knockdown. Conclusions The hsa_circ_0064559 knockdown could inhibit the proliferation, promote apoptosis in CRC cell lines in vitro, and inhibit the development of CRC tumors in vivo. The mechanism may be related to activating a wide range of signaling pathways. The hsa_circ_0064559 may be a potential biomarker for early diagnosis or prognosis of CRC and a novel drug target for CRC therapy.

Funder

Innovation Project of Shandong Academy of Medical Sciences

Shandong Provincial Medicine and Health Science Technology Development Plan

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3