Incidence trends and survival prediction of urothelial cancer of the bladder: a population-based study

Author:

He Hairong,Liu Tianjie,Han Didi,Li Chengzhuo,Xu Fengshuo,Lyu Jun,Gao Ye

Abstract

Abstract Background The aim of this study is to determine the incidence trends of urothelial cancer of the bladder (UCB) and to develop a nomogram for predicting the cancer-specific survival (CSS) of postsurgery UCB at a population-based level based on the SEER database. Methods The age-adjusted incidence of UCB diagnosed from 1975 to 2016 was extracted, and its annual percentage change was calculated and joinpoint regression analysis was performed. A nomogram was constructed for predicting the CSS in individual cases based on independent predictors. The predictive performance of the nomogram was evaluated using the consistency index (C-index), net reclassification index (NRI), integrated discrimination improvement (IDI), a calibration plot and the receiver operating characteristics (ROC) curve. Results The incidence of UCB showed a trend of first increasing and then decreasing from 1975 to 2016. However, the overall incidence increased over that time period. The age at diagnosis, ethnic group, insurance status, marital status, differentiated grade, AJCC stage, regional lymph nodes removed status, chemotherapy status, and tumor size were independent prognostic factors for postsurgery UCB. The nomogram constructed based on these independent factors performed well, with a C-index of 0.823 and a close fit to the calibration curve. Its prediction ability for CSS of postsurgery UCB is better than that of the existing AJCC system, with NRI and IDI values greater than 0 and ROC curves exhibiting good performance for 3, 5, and 8 years of follow-up. Conclusions The nomogram constructed in this study might be suitable for clinical use in improving the clinical predictive accuracy of the long-term survival for postsurgery UCB.

Funder

the National Social Science Foundation of China

Key Research and Development Program of Shaanxi Province, China

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3