Short-term smoking cessation leads to a universal decrease in whole blood genomic DNA methylation in patients with a smoking history

Author:

Shang Junyi,Nie Xinran,Qi Yanan,Zhou Jing,Qi Yong

Abstract

Abstract Background Epigenetics is involved in various human diseases. Smoking is one of the most common environmental factors causing epigenetic changes. The DNA methylation changes and mechanisms after quitting smoking have yet to be defined. The present study examined the changes in DNA methylation levels before and after short-term smoking cessation and explored the potential mechanism. Methods Whole blood and clinical data were collected from 8 patients before and after short-term smoking cessation, DNA methylation was assessed, and differentially methylated sites were analyzed, followed by a comprehensive analysis of the differentially methylated sites with clinical data. GO/KEGG enrichment and protein–protein interaction (PPI) network analyses identified the hub genes. The differentially methylated sites between former and current smokers in GSE50660 from the GEO database were detected by GEO2R. Then, a Venn analysis was carried out using the differentially methylated sites. GO/KEGG enrichment analysis was performed on the genes corresponding to the common DNA methylation sites, the PPI network was constructed, and hub genes were predicted. The enriched genes associated with the cell cycle were selected, and the pan-cancer gene expression and clinical significance in lung cancer were analyzed based on the TCGA database. Results Most genes showed decreased DNA methylation levels after short-term smoking cessation; 694 upregulated methylation CpG sites and 3184 downregulated methylation CpG sites were identified. The DNA methylation levels were altered according to the clinical data (body weight, expiratory, and tobacco dependence score). Enrichment analysis, construction of the PPI network, and pan-cancer analysis suggested that smoking cessation may affect various biological processes. Conclusions Smoking cessation leads to epigenetic changes, mainly decreased in the decline of most DNA methylation levels. Bioinformatics further identified the biologically relevant changes after short-term smoking cessation.

Funder

The Young and Middle-aged Health Science and Technology Innovation Talent Training Project of Henan

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3