Circ_0000808 promotes the development of non-small cell lung cancer by regulating glutamine metabolism via the miR-1827/SLC1A5 axis

Author:

Cai Yong,Dong Zhiyi,Wang Jiying

Abstract

Abstract Background Circular RNA (circRNA) has been proved to be an important molecular target for cancer treatment. However, the function and molecular mechanism of circ_0000808 in non-small cell lung cancer (NSCLC) are still unclear. Methods Quantitative real-time PCR was used to detect the expression of circ_0000808, miR-1827, and solute carrier family 1 member 5 (SLC1A5). Cell proliferation, apoptosis, migration, and invasion were measured by cell counting kit 8 assay, colony formation assay, EdU staining, flow cytometry, wound healing assay, and transwell assay. The protein expression was measured by Western blot analysis. Dual-luciferase reporter assay and RIP assay were used to investigate the interactions between miR-1827 and circ_0000808 or SLC1A5. Cell glutamine metabolism was assessed by determining glutamine uptake, glutamate production, and α-ketoglutarate production. Xenograft mouse model was used to assess the in vivo effects of circ_0000808. Results Circ_0000808 expression was upregulated in NSCLC tissues and cancer cells, and its silencing inhibited NSCLC cell proliferation, migration, and invasion and led to apoptosis. Further results confirmed that circ_0000808 interacted with miR-1827 to positively regulate SLC1A5. The rescue experiments showed that miR-1827 inhibitor reversed the suppressive effect of circ_0000808 knockdown on the malignant behaviors of NSCLC cells. Also, SLC1A5 overexpression abolished the inhibition effect of miR-1827 on NSCLC cell progression. In addition, circ_0000808/miR-1827/SLC1A5 axis positively regulated the glutamine metabolism process in NSCLC cells. Moreover, circ_0000808 knockdown reduced the NSCLC tumor growth in vivo. Conclusion In summary, our data showed that circ_0000808 enhanced the progression of NSCLC by promoting glutamine metabolism through the miR-1827/SLC1A5 axis.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3