Abstract
Abstract
Background
Despite chemotherapy being a common treatment, an increase in chemoresistance over time is unavoidable. We therefore investigated the role of miR-194-5p in regulating chordoma cell behavior and examined the downstream effectors of miR-194-5p.
Methods
In this study, NSCLC cell lines A549 and H460 were cultured under hypoxic conditions for 1 week to induce drug resistance to doxorubicin (DOX). The connection between miR-194-5p and HIF-1 was revealed by reverse transcription and real-time polymerase chain reaction (RT-qPCR), western blot, and dual-luciferase assays. We used TUNEL staining and the CCK-8 test to assess the sensitivity of NSCLC cells to DOX.
Results
We found that hypoxia-induced NSCLC cells enhanced resistance to DOX. MiR-194-5p was substantially reduced, and HIF-1 was increased in hypoxia-induced drug-resistant NSCLC cells. Moreover, miR-194-5p successfully induced NSCLC cell apoptosis by directly inhibiting HIF-1, thereby enhancing DOX sensitivity.
Conclusions
MiR-194-5p enhanced the sensitivity of NSCLC cells to DOX by directly inhibiting HIF-1. This work provides insights into underlying treatments for drug-resistant NSCLC.
Funder
Foundation of Nanjing Medical University
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献