A study predicting long-term survival capacity in postoperative advanced gastric cancer patients based on MAOA and subcutaneous muscle fat characteristics

Author:

Han Yubo,Chang Yaoyuan,Wang Jiaqi,Li Nanbo,Yu Yang,Yang Zhengbo,Lv Weipeng,Liu Wenfei,Yin Jiajun,Wu Ju

Abstract

Abstract Background The prognosis of advanced gastric cancer (AGC) is relatively poor, and long-term survival depends on timely intervention. Currently, predicting survival rates remains a hot topic. The application of radiomics and immunohistochemistry-related techniques in cancer research is increasingly widespread. However, their integration for predicting long-term survival in AGC patients has not been fully explored. Methods We Collected 150 patients diagnosed with AGC at the Affiliated Zhongshan Hospital of Dalian University who underwent radical surgery between 2015 and 2019. Following strict inclusion and exclusion criteria, 90 patients were included in the analysis. We Collected postoperative pathological specimens from enrolled patients, analyzed the expression levels of MAOA using immunohistochemical techniques, and quantified these levels as the MAOAHScore. Obtained plain abdominal CT images from patients, delineated the region of interest at the L3 vertebral body level, and extracted radiomics features. Lasso Cox regression was used to select significant features to establish a radionics risk score, convert it into a categorical variable named risk, and use Cox regression to identify independent predictive factors for constructing a clinical prediction model. ROC, DCA, and calibration curves validated the model’s performance. Results The enrolled patients had an average age of 65.71 years, including 70 males and 20 females. Multivariate Cox regression analysis revealed that risk (P = 0.001, HR = 3.303), MAOAHScore (P = 0.043, HR = 2.055), and TNM stage (P = 0.047, HR = 2.273) emerged as independent prognostic risk factors for 3-year overall survival (OS) and The Similar results were found in the analysis of 3-year disease-specific survival (DSS). The nomogram developed could predict 3-year OS and DSS rates, with areas under the ROC curve (AUCs) of 0.81 and 0.797, respectively. Joint calibration and decision curve analyses (DCA) confirmed the nomogram’s good predictive performance and clinical utility. Conclusion Integrating immunohistochemistry and muscle fat features provides a more accurate prediction of long-term survival in gastric cancer patients. This study offers new perspectives and methods for a deeper understanding of survival prediction in AGC.

Funder

Dalian Deng Feng Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3