Development and validation of prognostic nomograms for patients with colon neuroendocrine neoplasms

Author:

Xu Ruitong,Zhou Bingrong,Hu Ping,Xue Bingyan,Gu Danyang,Li Xiaolin,Tang Qiyun

Abstract

Abstract Background Colon neuroendocrine neoplasms (NENs) have one of the poorest median overall survival (OS) rates among all NENs. The American Joint Committee on Cancer (AJCC) tumor–node–metastasis (TNM) staging system—currently the most commonly used prediction model—has limited prediction accuracy because it does not include parameters such as age, sex, and treatment. The aim of this study was to construct nomograms containing various clinically important parameters to predict the prognosis of patients with colon NENs more accurately. Methods Using the Surveillance, Epidemiology, and End Results (SEER) database, we performed a retrospective analysis of colon NENs diagnosed from 1975 to 2016. Data were collected from 1196 patients; almost half were female (617/1196, 51.6%), and the average age was 61.94 ± 13.05 years. Based on the age triple cut-off values, there were 396 (33.1%), 408 (34.1%), and 392 (32.8%) patients in age groups 0–55 years, 55–67 years, and ≥ 68 years, respectively. Patients were randomized into training and validation cohorts (3:1). Independent prognostic factors were used for construction of nomograms to precisely predict OS and cancer-specific survival (CSS) in patients with colon NENs. Results Multivariate analysis showed that age ≥ 68 years, sex, tumor size, grade, chemotherapy, N stage, and M stage were independent predictors of OS. In the validation cohort, the Concordance index (C-index) values of the OS and CSS nomograms were 0.8345 (95% confidence interval [CI], 0.8044–0.8646) and 0.8209 (95% CI, 0.7808–0.861), respectively. C-index also indicated superior performance of both nomograms (C-index 0.8347 for OS and 0.8668 for CSS) compared with the AJCC TNM classification (C-index 0.7159 for OS and 0.7366 for CSS). Conclusions We established and validated new nomograms for more precise prediction of OS and CSS in patients with colon NENs to facilitate individualized clinical decisions.

Funder

the Medical Key Talents Project of Jiangsu Province

333 Project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3