An MR-based radiomics model for differentiation between hepatocellular carcinoma and focal nodular hyperplasia in non-cirrhotic liver

Author:

Ding Zongren,Lin Kongying,Fu Jun,Huang Qizhen,Fang Guoxu,Tang Yanyan,You Wuyi,Lin Zhaowang,Lin Zhan,Pan Xingxi,Zeng Yongyi

Abstract

Abstract Purpose We aimed to develop and validate a radiomics model for differentiating hepatocellular carcinoma (HCC) from focal nodular hyperplasia (FNH) in non-cirrhotic livers using Gd-DTPA contrast-enhanced magnetic resonance imaging (MRI). Methods We retrospectively enrolled 149 HCC and 75 FNH patients treated between May 2015 and May 2019 at our center. Patients were randomly allocated to a training (n=156) and validation set (n=68). In total, 2260 radiomics features were extracted from the arterial phase and portal venous phase of Gd-DTPA contrast-enhanced MRI. Using Max-Relevance and Min-Redundancy, random forest, least absolute shrinkage, and selection operator algorithm for dimensionality reduction, multivariable logistic regression was used to build the radiomics model. A clinical model and combined model were also established. The diagnostic performance of the models was compared. Results Eight radiomics features were chosen for the radiomics model, and four clinical factors (age, sex, HbsAg, and enhancement pattern) were chosen for the clinical model. A combined model was built using the factors from the previous models. The classification accuracy of the combined model differentiated HCC from FNH in both the training and validation sets (0.956 and 0.941, respectively). The area under the receiver operating characteristic curve of the combined model was significantly better than that of the clinical model for both the training (0.984 vs. 0.937, p=0.002) and validation (0.972 vs. 0.903, p=0.032) sets. Conclusions The combined model provided a non-invasive quantitative method for differentiating HCC from FNH in non-cirrhotic liver with high accuracy. Our model may assist clinicians in the clinical decision-making process.

Funder

Science and Technology project of Fuzhou

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3