Potential role of chimeric genes in pathway-related gene co-expression modules

Author:

Li Piaopiao,Li Yingxia,Ma Lei

Abstract

Abstract Background Gene fusion has epigenetic modification functions. The novel proteins encoded by gene fusion products play a role in cancer development. Therefore, a better understanding of the novel protein products may provide insights into the pathogenesis of tumors. However, the characteristics of chimeric genes are rarely studied. Here, we used weighted co-expression network analysis to investigate the biological roles and underlying mechanisms of chimeric genes. Methods Download the pig transcriptome data, we screened chimeric genes and parental genes from 688 sequences and 153 samples, predict their domains, and analyze their associations. We constructed a co-expression network of chimeric genes in pigs and conducted Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis on the generated modules using DAVID to identify key networks and modules related to chimeric genes. Results Our findings showed that most of the protein domains of chimeric genes were derived from fused pre-genes. Chimeric genes were enriched in modules involved in the negative regulation of cell proliferation and protein localization to centrosomes. In addition, the chimeric genes were related to the growth factor-β superfamily, which regulates cell growth and differentiation. Furthermore, in helper T cells, chimeric genes regulate the specific recognition of T cell receptors, implying that chimeric genes play a key role in the regulation pathway of T cells. Chimeric genes can produce new domains, and some chimeric genes are a key role involved in pathway-related function. Conclusions Most chimeric genes show binding activity. Domains of chimeric genes are derived from several combinations of parent genes. Chimeric genes play a key role in the regulation of several cellular pathways. Our findings may provide new directions to explore the roles of chimeric genes in tumors.

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3