Author:
Yan Yuanliang,Liu Yuanhong,Liang Qiuju,Xu Zhijie
Abstract
AbstractGliomas are the most prevalent primary tumor in the central nervous system, with an abysmal 5-year survival rate and alarming mortality. The current standard management of glioma is maximum resection of tumors followed by postoperative chemotherapy with temozolomide (TMZ) or radiotherapy. Low chemosensitivity of TMZ in glioma treatment eventuates limited therapeutic efficacy or treatment failure. Hence, overcoming the resistance of glioma to TMZ is a pressing question. Our research centered on identifying the drug metabolism-related genes potentially involved in TMZ-treated resistance of glioma through several bioinformatics datasets and cell experiments. One efflux transporter, ATP-binding cassette transporter subfamily A1 (ABCA1), was discovered with an upregulated expression level and signaled poor clinical outcomes for glioma patients. The transcript level of ABCA1 significantly elevated across the TMZ-resistant glioma cells in contrast with non-resistant cells. Over-expressed ABCA1 restrained the drug activity of TMZ, and ABCA1 knockdown improved the treatment efficacy. Meanwhile, the results of molecular docking between ABCA1 protein and TMZ showed a high binding affinity. Additionally, co-expression and immunological analysis revealed that ABCA1 facilitates the immune infiltration of M2 macrophages in glioma, thereby stimulating tumor growth and aggravating the poor survival of patients. Altogether, we discovered that the ABCA1 transporter was involved in TMZ chemoresistance and the immune infiltration of M2 macrophages in glioma. Treatment with TMZ after ABCA1 knockdown enhances the chemosensitivity, suggesting that inhibition of ABCA1 may be a potential strategy for improving the therapeutic efficacy of gliomas.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献