LASSO regression shows histidine and sphingosine 1 phosphate are linked to both sepsis mortality and endothelial damage

Author:

Johansson Pär I.,Henriksen Hanne H.,Karvelsson Sigurður T.,Rolfsson Óttar,Schønemann-Lund Martin,Bestle Morten H.,McGarrity Sarah

Abstract

AbstractSepsis is a major cause of death worldwide, with a mortality rate that has remained stubbornly high. The current gold standard of risk stratifying sepsis patients provides limited mechanistic insight for therapeutic targeting. An improved ability to predict sepsis mortality and to understand the risk factors would allow better treatment targeting. Sepsis causes metabolic dysregulation in patients; therefore, metabolomics offers a promising tool to study sepsis. It is also known that that in sepsis endothelial cells affecting their function regarding blood clotting and vascular permeability. We integrated metabolomics data from patients admitted to an intensive care unit for sepsis, with commonly collected clinical features of their cases and two measures of endothelial function relevant to blood vessel function, platelet endothelial cell adhesion molecule and soluble thrombomodulin concentrations in plasma. We used least absolute shrinkage and selection operator penalized regression, and pathway enrichment analysis to identify features most able to predict 30-day survival. The features important to sepsis survival include carnitines, and amino acids. Endothelial proteins in plasma also predict 30-day mortality and the levels of these proteins also correlate with a somewhat overlapping set of metabolites. Overall metabolic dysregulation, particularly in endothelial cells, may be a contributory factor to sepsis response. By exploring sepsis metabolomics data in conjunction with clinical features and endothelial proteins we have gained a better understanding of sepsis risk factors.

Funder

Icelandic Centre for Research

Novo Nordisk Fonden

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3