Exploration of tissue fixation methods suitable for digital pathological studies of the testis

Author:

Tian Pengxiang,Yang Zhan,Qu Changbao,Qi Xin,Zhu Linlin,Hao Guimin,Zhang Yong

Abstract

Abstract Background The way of testicular tissue fixation directly affects the correlation and structural integrity between connective tissue and seminiferous tubules, which is essential for the study of male reproductive development. This study aimed to find the optimal fixative and fixation time to produce high-quality testicular histopathological sections, and provided a suitable foundation for in-depth study of male reproductive development with digital pathology technology. Methods Testes were removed from both sides of 25 male C57BL/6 mice. Samples were fixed in three different fixatives, 10% neutral buffered formalin (10% NBF), modified Davidson’s fluid (mDF), and Bouin’s Fluid (BF), for 8, 12, and 24 h, respectively. Hematoxylin and eosin (H&E) staining, periodic acid Schiff-hematoxylin (PAS-h) staining, and immunohistochemistry (IHC) were used to evaluate the testicle morphology, staging of mouse seminiferous tubules, and protein preservation. Aperio ScanScope CS2 panoramic scanning was used to perform quantitative analyses. Results H&E staining showed 10% NBF resulted in an approximately 15–17% reduction in the thickness of seminiferous epithelium. BF and mDF provided excellent results when staining acrosomes with PAS-h. IHC staining of synaptonemal complexes 3 (Sycp3) was superior in mDF compared to BF-fixed samples. Fixation in mDF and BF improved testis tissue morphology compared to 10% NBF. Conclusions Quantitative analysis showed that BF exhibited a very low IHC staining efficiency and revealed that mouse testes fixed for 12 h with mDF, exhibited morphological details, excellent efficiency of PAS-h staining for seminiferous tubule staging, and IHC results. In addition, the morphological damage of testis was prolonged with the duration of fixation time.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3