Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG
-
Published:2023-12-19
Issue:1
Volume:28
Page:
-
ISSN:2047-783X
-
Container-title:European Journal of Medical Research
-
language:en
-
Short-container-title:Eur J Med Res
Author:
Tang Congzhi,Zhou Ting,Zhang Yun,Yuan Runping,Zhao Xianghu,Yin Ruian,Song Pengfei,Liu Bo,Song Ruyan,Chen Wenli,Wang Hongxing
Abstract
Abstract
Background
Upper limb dysfunction after stroke seriously affects quality of life. Bilateral training has proven helpful in recovery of upper limb motor function in these patients. However, studies evaluating the effectiveness of bilateral upper limb robot-assisted training on improving motor function and quality of life in stroke patients are lacking. Quantitative electroencephalography (EEG) is non-invasive, simple, and monitors cerebral cortical activity, which can be used to evaluate the effectiveness of interventions. In this study, EEG was used to evaluate the effect of end-drive bilateral upper extremity robot-assisted training on upper extremity functional recovery in stroke patients.
Methods
24 stroke patients with hemiplegia were randomly divided into a conventional training (CT, n = 12) group or a bilateral upper limb robot-assisted training (BRT, n = 12) group. All patients received 60 min of routine rehabilitation treatment including rolling, transferring, sitting, standing, walking, etc., per day, 6 days a week, for three consecutive weeks. The BRT group added 30 min of bilateral upper limb robot-assisted training per day, while the CT group added 30 min of upper limb training (routine occupational therapy) per day, 6 days a week, for 3 weeks. The primary outcome index to evaluate upper limb motor function was the Fugl-Meyer functional score upper limb component (FMA-UE), with the secondary outcome of activities of daily living (ADL), assessed by the modified Barthel index (MBI) score. Quantitative EEG was used to evaluate functional brain connectivity as well as alpha and beta power current source densities of the brain.
Results
Significant (p < 0.05) within-group differences were found in FMA-UE and MBI scores for both groups after treatment. A between-group comparison indicated the MBI score of the BRT group was significantly different from that of the CT group, whereas the FMA-UE score was not significantly different from that of the CT group after treatment. The differences of FMA-UE and MBI scores before and after treatment in the BRT group were significantly different as compared to the CT group. In addition, beta rhythm power spectrum energy was higher in the BRT group than in the CT group after treatment. Functional connectivity in the BRT group, under alpha and beta rhythms, was significantly increased in both the bilateral frontal and limbic lobes as compared to the CT group.
Conclusions
BRT outperformed CT in improving ADL in stroke patients within three months, and BRT facilitates the recovery of upper limb function by enhancing functional connectivity of the bilateral cerebral hemispheres.
Funder
Horizontal Project of Nanjing Estun Co.,LTD fund National Key Research and Development Program of China Jiangsu Provincial Key Research and Development Program Jiangsu Province Capability Improvement Project through Science, Technology and Education Jiangsu Provincial Medical Key Discipline Cultivation Unit
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111. 2. Batool S, Soomro N, Amjad F, Fauz R. To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke. Pak J Med Sci. 2015;31(5):1167–71. 3. Dehem S, Gilliaux M, Stoquart G, Detrembleur C, Jacquemin G, Palumbo S, Frederick A, Lejeune T. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: a single-blind, randomised, controlled trial. Ann Phys Rehabil Med. 2019;62(5):313–20. 4. Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD, Huang WC. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006–16. 5. Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Aird L, Alvarado N, Andole S, Cohen DL, Dawson J, Fernandez-Garcia C, Finch T, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Ternent L, Turner DL, Vale L, Wilkes S, Shaw L. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51–62.
|
|