Identifying novel clinical phenotypes of acute respiratory distress syndrome using trajectories of daily fluid balance: a secondary analysis of randomized controlled trials

Author:

Wu Fei,Shi Suqin,Wang Zixuan,Wang Yurong,Xia Le,Feng Qingling,Hang Xin,Zhu Min,Zhuang Jinqiang

Abstract

Abstract Background Previously identified phenotypes of acute respiratory distress syndrome (ARDS) could not reveal the dynamic change of phenotypes over time. We aimed to identify novel clinical phenotypes in ARDS using trajectories of fluid balance, to test whether phenotypes respond differently to different treatment, and to develop a simplified model for phenotype identification. Methods FACTT (conservative vs liberal fluid management) trial was classified as a development cohort, joint latent class mixed models (JLCMMs) were employed to identify trajectories of fluid balance. Heterogeneity of treatment effect (HTE) for fluid management strategy across phenotypes was investigated. We also constructed a parsimonious probabilistic model using baseline data to predict the fluid trajectories in the development cohort. The trajectory groups and the probabilistic model were externally validated in EDEN (initial trophic vs full enteral feeding) trial. Results Using JLCMM, we identified two trajectory groups in the development cohort: Class 1 (n = 758, 76.4% of the cohort) had an early positive fluid balance, but achieved negative fluid balance rapidly, and Class 2 (n = 234, 24.6% of the cohort) was characterized by persistent positive fluid balance. Compared to Class 1 patients, patients in Class 2 had significantly higher 60-day mortality (53.5% vs. 17.8%, p < 0.001), and fewer ventilator-free days (0 vs. 20, p < 0.001). A significant HTE between phenotypes and fluid management strategies was observed in the FACTT. An 8-variables model was derived for phenotype assignment. Conclusions We identified and validated two novel clinical trajectories for ARDS patients, with both prognostic and predictive enrichment. The trajectories of ARDS can be identified with simple classifier models.

Funder

the Open Project Program of Key Laboratory of Big Data Analysis and Knowledge Services, Yangzhou City, Yangzhou University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3