Identification of milling status based on vibration signals using artificial intelligence in robot-assisted cervical laminectomy

Author:

Wang Rui,Bai He,Xia Guangming,Zhou Jiaming,Dai Yu,Xue Yuan

Abstract

Abstract Background With advances in science and technology, the application of artificial intelligence in medicine has significantly progressed. The purpose of this study is to explore whether the k-nearest neighbors (KNN) machine learning method can identify three milling states based on vibration signals: cancellous bone (CCB), ventral cortical bone (VCB), and penetration (PT) in robot-assisted cervical laminectomy. Methods Cervical laminectomies were performed on the cervical segments of eight pigs using a robot. First, the bilateral dorsal cortical bone and part of the CCB were milled with a 5 mm blade and then the bilateral laminae were milled to penetration with a 2 mm blade. During the milling process using the 2 mm blade, the vibration signals were collected by the acceleration sensor, and the harmonic components were extracted using fast Fourier transform. The feature vectors were constructed with vibration signal amplitudes of 0.5, 1.0, and 1.5 kHz and the KNN was then trained by the features vector to predict the milling states. Results The amplitudes of the vibration signals between VCB and PT were statistically different at 0.5, 1.0, and 1.5 kHz (P < 0.05), and the amplitudes of the vibration signals between CCB and VCB were significantly different at 0.5 and 1.5 kHz (P < 0.05). The KNN recognition success rates for the CCB, VCB, and PT were 92%, 98%, and 100%, respectively. A total of 6% and 2% of the CCB cases were identified as VCB and PT, respectively; 2% of VCB cases were identified as PT. Conclusions The KNN can distinguish different milling states of a high-speed bur in robot-assisted cervical laminectomy based on vibration signals. This method is feasible for improving the safety of posterior cervical decompression surgery.

Funder

Tianjin Health Research Project

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3