Author:
Wang Hui,Zhao Yongheng,Zhang Dongqing,Li Jun,Yang Kun,Yang Junli,Li Baomin
Abstract
Abstract
Introduction
Epilepsy is a common neurological disorder that presents with challenging mechanisms and treatment strategies. This study investigated the neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epileptic rats and explored its potential mechanisms.
Methods
Lithium chloride pilocarpine was used to induce an epileptic model in rats, and the effects of quinpirole on seizure symptoms and cognitive function were evaluated. The Racine scoring method, electroencephalography, and Morris water maze test were used to assess seizure severity and learning and memory functions in rats in the epileptic group. Additionally, immunohistochemistry and Western blot techniques were used to analyze the protein expression levels and morphological changes in glutamate receptor 2 (GluR2; GRIA2), BAX, and BCL2 in the hippocampi of rats in the epileptic group.
Results
First, it was confirmed that the symptoms in rats in the epileptic group were consistent with features of epilepsy. Furthermore, these rats demonstrated decreased learning and memory function in the Morris water maze test. Additionally, gene and protein levels of GluR2 in the hippocampi of rats in the epileptic group were significantly reduced.
Quinpirole treatment significantly delayed seizure onset and decreased the mortality rate after the induction of a seizure. Furthermore, electroencephalography showed a significant decrease in the frequency of the spike waves. In the Morris water maze test, rats from the quinpirole treatment group demonstrated a shorter latency period to reach the platform and an increased number of crossings through the target quadrant. Network pharmacology analysis revealed a close association between quinpirole and GluR2 as well as its involvement in the cAMP signaling pathway, cocaine addiction, and dopaminergic synapses.
Furthermore, immunohistochemistry and Western blot analysis showed that quinpirole treatment resulted in a denser arrangement and a more regular morphology of the granule cells in the hippocampi of rats in the epileptic group. Additionally, quinpirole treatment decreased the protein expression of BAX and increased the protein expression of BCL2.
Conclusion
The current study demonstrated that quinpirole exerted neuroprotective effects in the epileptic rat model induced by lithium chloride pilocarpine. Additionally, it was found that the treatment not only alleviated the rats' seizure symptoms, but also improved their learning and memory abilities. This improvement was linked to the modulation of protein expression levels of GLUR2, BAX, and BCL2. These findings provided clues that would be important for further investigation of the therapeutic potential of quinpirole and its underlying mechanisms for epilepsy treatment.
Publisher
Springer Science and Business Media LLC