Inhibitors of IFN gene stimulators (STING) improve intestinal ischemia–reperfusion-induced acute lung injury by activating AMPK signaling

Author:

Yang Mei,Ma Yu-Xia,Zhi Ying,Wang Hai-Bin,Zhao Li,Wang Peng-Sheng,Niu Jie-Ting

Abstract

Abstract Background Acute lung injury (ALI) caused by intestinal ischemia–reperfusion is a life-threatening disease. Interferon gene stimulator (STING) is a cytoplasmic DNA sensor that participates in the initiation of the inflammatory response. This study aims to establish whether C-176 (STING inhibitor) improves ALI under intestinal ischemia–reperfusion conditions. Methods To induce ALI, 72 male C57BL/6 mice were subjected to intestinal ischemia for 60 min and reperfusion for 3 h. Through intraperitoneal injection, C-176, a selective STING inhibitor, was injected 30 min before surgical treatment; meanwhile, compound C, an antagonist of adenosine monophosphate-activated protein kinase (AMPK), was administered 30 min after surgery. Based on immunofluorescence and Western blot assays, post-ALI assessments included lung water content (TLW), bronchoalveolar lavage fluid (BALF) protein, H&E staining, Masson staining, pulmonary pyroptosis [Gasdermin-D (GSDMD), cleaved caspase-1], and apoptosis (TUNEL, cleaved caspase-3). Results C-176 administration significantly attenuated intestinal ischemia–reperfusion-mediated ALI; this effect was reflected by exacerbated TLW and BALF protein, aggravated lung injury score, elevated degree of pulmonary fibrosis, increased TUNEL- and GSDMD-positive cells, and upregulated phospho-AMPK, cleaved caspase-1, cleaved caspase-3 and IFNβ mRNA expression. Moreover, C-176 increased phospho-AMPK under ALI conditions. Nonetheless, compound C partially reversed these beneficial effects. Conclusion C-176, a selective STING inhibitor, improves intestinal ischemia–reperfusion-mediated ALI, and its underlying mechanism may be associated with AMPK signal activation.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3