Opportunistic screening for long-term muscle wasting in critically ill patients: insights from an acute pancreatitis cohort

Author:

Kolck JohannesORCID,Hosse Clarissa,Leimbach Alexandra,Beetz Nick L.,Auer Timo A.,Collettini Federico,Fehrenbach Uli,Pille Christian,Geisel Dominik

Abstract

Abstract Objectives To assess the feasibility of long-term muscle monitoring, we implemented an AI-guided segmentation approach on clinically indicated Computed Tomography (CT) examinations conducted throughout the hospitalization period of patients admitted to the intensive care unit (ICU) with acute pancreatitis (AP). In addition, we aimed to investigate the potential of muscle monitoring for early detection of patients at nutritional risk and those experiencing adverse outcomes. This cohort served as a model for potential integration into clinical practice. Materials Retrospective cohort study including 100 patients suffering from AP that underwent a minimum of three CT scans during hospitalization, totaling 749 assessments. Sequential segmentation of psoas muscle area (PMA) was performed and was relative muscle loss per day for the entire monitoring period, as well as for the interval between each consecutive scan was calculated. Subgroup and outcome analyses were performed including ANOVA. Discriminatory power of muscle decay rates was evaluated using ROC analysis. Results Monitoring PMA decay revealed significant long-term losses of 48.20% throughout the hospitalization period, with an average daily decline of 0.98%. Loss rates diverged significantly between survival groups, with 1.34% PMA decay per day among non-survivors vs. 0.74% in survivors. Overweight patients exhibited significantly higher total PMA losses (52.53 vs. 42.91%; p = 0.02) and average PMA loss per day (of 1.13 vs. 0.80%; p = 0.039). The first and the maximum decay rate, in average available after 6.16 and 17.03 days after ICU admission, showed convincing discriminatory power for survival in ROC analysis (AUC 0.607 and 0.718). Both thresholds for maximum loss (at 3.23% decay per day) and for the initial loss rate (at 1.98% per day) proved to be significant predictors of mortality. Conclusions The innovative AI-based PMA segmentation method proved robust and effortless, enabling the first comprehensive assessment of muscle wasting in a large cohort of intensive care pancreatitis patients. Findings revealed significant muscle wasting (48.20% on average), particularly notable in overweight individuals. Higher rates of initial and maximum muscle loss, detectable early, correlated strongly with survival. Integrating this tool into routine clinical practice will enable continuous muscle status tracking and early identification of those at risk for unfavorable outcomes.

Funder

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3