Risk factors analysis and survival prediction model establishment of patients with lung adenocarcinoma based on different pyroptosis-related gene subtypes

Author:

Wen Ziang,Pei Bei,Dai Longfei,Lu Peng,Li Xiangyu,Zhang Chengxin,Ge Shenglin

Abstract

Abstract Background Lung adenocarcinoma (LUAD) is a common cancer with a poor prognosis. Pyroptosis is an important process in the development and progression of LUAD. We analyzed the risk factors affecting the prognosis of patients and constructed a nomogram to predict the overall survival of patients based on different pyroptosis-related genes (PRGs) subtypes. Methods The genomic data of LUAD were downloaded from the TCGA and GEO databases, and all data were filtered and divided into TCGA and GEO cohorts. The process of data analysis and visualization was performed via R software. The data were classified based on different PRGs subtypes using the K-means clustering method. Then, the differentially expressed genes were identified between two different subtypes, and risk factors analysis, survival analysis, functional enrichment analysis, and immune cells infiltration landscape analysis were conducted. The COX regression analysis was used to construct the prediction model. Results Based on the PRGs of LUAD, the patients were divided into two subtypes. We found the survival probability of patients in subtype 1 is higher than that in subtype 2. The results of the logistics analysis showed that gene risk score was closely associated with the prognosis of LUAD patients. The results of GO analysis and KEGG analysis revealed important biological processes and signaling pathways involved in the differentially expressed proteins between the two subtypes. Then we constructed a prediction model of patients’ prognosis based on 13 genes, including IL-1A, P2RX1, GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, GDF10, NDC80, GSTA1, BCL2L10, and CCR2. This model was strongly related to the overall survival (OS) and also reflects the immune status in patients with LUAD. Conclusion In our study, we examined LUAD heterogeneity with reference to pyroptosis and found different prognoses between the two subtypes. And a novel prediction model was constructed to predict the OS of LUAD patients based on different PRGs signatures. The model has shown excellent predictive efficiency through validation.

Funder

Anhui Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3