Preadmission assessment of extended length of hospital stay with RFECV-ETC and hospital-specific data

Author:

Ossai Chinedu I.,Rankin David,Wickramasinghe Nilmini

Abstract

Abstract Background Patients who exceed their expected length of stay in the hospital come at a cost to stakeholders in the healthcare sector as bed spaces are limited for new patients, nosocomial infections increase and the outcome for many patients is hampered due to multimorbidity after hospitalization. Objectives This paper develops a technique for predicting Extended Length of Hospital Stay (ELOHS) at preadmission and their risk factors using hospital data. Methods A total of 91,468 records of patient’s hospital information from a private acute teaching hospital were used for developing a machine learning algorithm relaying on Recursive Feature Elimination with Cross-Validation and Extra Tree Classifier (RFECV-ETC). The study implemented Synthetic Minority Oversampling Technique (SMOTE) and tenfold cross-validation to determine the optimal features for predicting ELOHS while relying on multivariate Logistic Regression (LR) for computing the risk factors and the Relative Risk (RR) of ELOHS at a 95% confidence level. Results An estimated 11.54% of the patients have ELOHS, which increases with patient age as patients < 18 years, 18–40 years, 40–65 years and ≥ 65 years, respectively, have 2.57%, 4.33%, 8.1%, and 15.18% ELOHS rates. The RFECV-ETC algorithm predicted preadmission ELOHS to an accuracy of 89.3%. Age is a predominant risk factors of ELOHS with patients who are > 90 years—PAG (> 90) {RR: 1.85 (1.34–2.56), P:  < 0.001} having 6.23% and 23.3%, respectively, higher likelihood of ELOHS than patient 80–90 years old—PAG (80–90) {RR: 1.74 (1.34–2.38), P:  < 0.001} and those 70–80 years old—PAG (70–80) {RR: 1.5 (1.1–2.05), P: 0.011}. Those from admission category—ADC (US1) {RR: 3.64 (3.09–4.28, P:  < 0.001} are 14.8% and 70.5%, respectively, more prone to ELOHS compared to ADC (UC1) {RR: 3.17 (2.82–3.55), P:  < 0.001} and ADC (EMG) {RR: 2.11 (1.93–2.31), P:  < 0.001}. Patients from SES (low) {RR: 1.45 (1.24–1.71), P:  < 0.001)} are 13.3% and 45% more susceptible to those from SES (middle) and SES (high). Admission type (ADT) such as AS2, M2, NEWS, S2 and others {RR: 1.37–2.77 (1.25–6.19), P:  < 0.001} also have a high likelihood of contributing to ELOHS while the distance to hospital (DTH) {RR: 0.64–0.75 (0.56–0.82), P:  < 0.001}, Charlson Score (CCI) {RR: 0.31–0.68 (0.22–0.99), P:  < 0.001–0.043} and some VMO specialties {RR: 0.08–0.69 (0.03–0.98), P:  < 0.001–0.035} have limited influence on ELOHS. Conclusions Relying on the preadmission assessment of ELOHS helps identify those patients who are susceptible to exceeding their expected length of stay on admission, thus, making it possible to improve patients’ management and outcomes.

Funder

DHCRC

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3