Agreement of tonometer for measuring intraocular pressure in Wistar rats: a systematic review

Author:

Nayak Anush,Deveswaran R.,Swati S.,Srividhya L.

Abstract

AbstractGlaucoma is the most common cause of irreversible blindness in the world. It is associated with elevated intraocular pressure (IOP). Fluctuations in tonometer readings have implications for glaucoma research, where accurate IOP measurements are vital for evaluating disease progression and treatment efficacy. Researchers should carefully select the appropriate tonometer and consider biases associated with different tonometers. Validation against standard measurements can improve IOP measurement accuracy in rat models. In conclusion, this systematic review will emphasize on the importance of selecting the appropriate tonometer for IOP measurement in rat models, considering potential biases and their implications for glaucoma research. Accurate and consistent IOP measurement in rat models is crucial for understanding glaucoma pathophysiology and developing effective treatments. This systematic review aims to assess agreement among tonometers used for measuring IOP in Wistar rat models primarily focusing on TonoLab, TonoVet, and Tono-pen. The review was conducted using PRISMA guidelines. Two articles were included for qualitative synthesis. The studies compared manometric IOP with TonoLab, rebound tonometer, and Tono-pen XL readings. It was observed that TonoLab consistently underestimated IOP, while Tono-pen XL tended to overestimate IOP compared to manometric measurements. The study’s findings will help researchers in making decisions about tonometer selection, leading to more reliable outcomes in glaucoma research using rat models. Further research, specifically RCT’s (randomized controlled trial) is needed to confirm the results and enhance IOP measurement precision in rat models.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3