Common clinical blood and urine biomarkers for ischemic stroke: an Estonian Electronic Health Records database study

Author:

Kurvits Siim,Harro Ainika,Reigo Anu,Ott Anne,Laur Sven,Särg Dage,Tampuu Ardi,Alasoo Kaur,Vilo Jaak,Milani Lili,Haller Toomas, ,

Abstract

Abstract Background Ischemic stroke (IS) is a major health risk without generally usable effective measures of primary prevention. Early warning signals that are easy to detect and widely available can save lives. Estonia has one nation-wide Electronic Health Record (EHR) database for the storage of medical information of patients from hospitals and primary care providers. Methods We extracted structured and unstructured data from the EHRs of participants of the Estonian Biobank (EstBB) and evaluated different formats of input data to understand how this continuously growing dataset should be prepared for best prediction. The utility of the EHR database for finding blood- and urine-based biomarkers for IS was demonstrated by applying different analytical and machine learning (ML) methods. Results Several early trends in common clinical laboratory parameter changes (set of red blood indices, lymphocyte/neutrophil ratio, etc.) were established for IS prediction. The developed ML models predicted the future occurrence of IS with very high accuracy and Random Forests was proved as the most applicable method to EHR data. Conclusions We conclude that the EHR database and the risk factors uncovered are valuable resources in screening the population for risk of IS as well as constructing disease risk scores and refining prediction models for IS by ML.

Funder

European Regional Development Fund

Horizon 2020 Framework Programme

IT tippkeskus EXCITE

Eesti Teadusagentuur

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3