Author:
Xiao Shuai,Chen Junjie,Wei Yongbao,Song Wei
Abstract
Abstract
Background
The basic helix-loop-helix family member e41 (BHLHE41) is frequently dysregulated in tumors and plays a crucial role in malignant progression of various cancers. Nevertheless, its specific function and underlying mechanism in bladder cancer (BCa) remain largely unexplored.
Methods
The expression levels of BHLHE41 in BCa tissues and cells were examined by qRT-PCR and western blot assays. BCa cells stably knocking down or overexpressing BHLHE41 were constructed through lentivirus infection. The changes of cell proliferation, cell cycle distribution, migration, and invasion were detected by CCK-8, flow cytometry, wound healing, transwell invasion assays, respectively. The expression levels of related proteins were detected by western blot assay. The interaction between BHLHE41 and PYCR1 was explored by co-immunoprecipitation analysis.
Results
In this study, we found that BHLHE41 was lowly expressed in bladder cancer tissues and cell lines, and lower expression of BHLHE41 was associated with poor overall survival in bladder cancer patients. Functionally, by manipulating the expression of BHLHE41, we demonstrated that overexpression of BHLHE41 significantly retarded cell proliferation, migration, invasion, and induced cell cycle arrest in bladder cancer through various in vitro and in vivo experiments, while silence of BHLHE41 caused the opposite effect. Mechanistically, we showed that BHLHE41 directly interacted with PYCR1, decreased its stability and resulted in the ubiquitination and degradation of PYCR1, thus inactivating PI3K/AKT signaling pathway. Rescue experiments showed that the effects induced by BHLHE41 overexpression could be attenuated by further upregulating PYCR1.
Conclusion
BHLHE41 might be a useful prognostic biomarker and a tumor suppressor in bladder cancer. The BHLHE41/PYCR1/PI3K/AKT axis might be a potential therapeutic target for bladder cancer intervention.
Funder
Natural Science Foundation of Hunan Province
Hunan Provincial People's Hospital Doctoral Fund Project
Publisher
Springer Science and Business Media LLC