Development and validation of a nomogram for predicting in-hospital mortality of patients with cervical spine fractures without spinal cord injury

Author:

Xing Zhibin,Cai Lingli,Wu Yuxuan,Shen Pengfei,Fu Xiaochen,Xu Yiwen,Wang Jing

Abstract

Abstract Background The incidence of cervical spine fractures is increasing every day, causing a huge burden on society. This study aimed to develop and verify a nomogram to predict the in-hospital mortality of patients with cervical spine fractures without spinal cord injury. This could help clinicians understand the clinical outcome of such patients at an early stage and make appropriate decisions to improve their prognosis. Methods This study included 394 patients with cervical spine fractures from the Medical Information Mart for Intensive Care III database, and 40 clinical indicators of each patient on the first day of admission to the intensive care unit were collected. The independent risk factors were screened using the Least Absolute Shrinkage and Selection Operator regression analysis method, a multi-factor logistic regression model was established, nomograms were developed, and internal validation was performed. A receiver operating characteristic (ROC) curve was drawn, and the area under the ROC curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were calculated to evaluate the discrimination of the model. Moreover, the consistency between the actual probability and predicted probability was reflected using the calibration curve and Hosmer–Lemeshow (HL) test. A decision curve analysis (DCA) was performed, and the nomogram was compared with the scoring system commonly used in clinical practice to evaluate the clinical net benefit. Results The nomogram indicators included the systolic blood pressure, oxygen saturation, respiratory rate, bicarbonate, and simplified acute physiology score (SAPS) II. The results showed that our model had satisfactory predictive ability, with an AUC of 0.907 (95% confidence interval [CI] = 0.853–0.961) and 0.856 (95% CI = 0.746–0.967) in the training set and validation set, respectively. Compared with the SAPS-II system, the NRI values of the training and validation sets of our model were 0.543 (95% CI = 0.147–0.940) and 0.784 (95% CI = 0.282–1.286), respectively. The IDI values of the training and validation sets were 0.064 (95% CI = 0.004–0.123; P = 0.037) and 0.103 (95% CI = 0.002–0.203; P = 0.046), respectively. The calibration plot and HL test results confirmed that our model prediction results showed good agreement with the actual results, where the HL test values of the training and validation sets were P = 0.8 and P = 0.95, respectively. The DCA curve revealed that our model had better clinical net benefit than the SAPS-II system. Conclusion We explored the in-hospital mortality of patients with cervical spine fractures without spinal cord injury and constructed a nomogram to predict their prognosis. This could help doctors assess the patient’s status and implement interventions to improve prognosis accordingly.

Funder

Science and Technology Program of Guangzhou

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3