SNAP25 is a potential target for early stage Alzheimer’s disease and Parkinson’s disease

Author:

Wang Qian,Tao Sijue,Xing Lei,Liu Jiuyu,Xu Cankun,Xu Xinyi,Ding Haohan,Shen Qi,Yu Xiaobo,Zheng Yingwei

Abstract

Abstract Background Alzheimer’s disease (AD) and Parkinson’s disease (PD), two common irreversible neurodegenerative diseases, share similar early stage syndromes, such as olfaction dysfunction. Yet, the potential comorbidity mechanism of AD and PD was not fully elucidated. Methods The gene expression profiles of GSE5281 and GSE8397 were downloaded from the Gene Expression Omnibus (GEO) database. We utilized a series of bioinformatics analyses to screen the overlapped differentially expressed genes (DEGs). The hub genes were further identified by the plugin CytoHubba of Cytoscape and validated in the hippocampus (HIP) samples of APP/PS-1 transgenic mice and the substantial nigra (SN) samples of A53T transgenic mice by real-time quantitative polymerase chain reaction (RT-qPCR). Meanwhile, the expression of the target genes in the olfactory epithelium/bulb was detected by RT-qPCR. Finally, molecular docking was used to screen potential compounds for the target gene. Results One hundred seventy-four overlapped DEGs were identified in AD and PD. Five of the top ten enrichment pathways mainly focused on the synapse. Five hub genes were identified and further validated. As a common factor in AD and PD, the changes of synaptosomal-associated protein 25 (SNAP25) mRNA in olfactory epithelium/bulb were significantly decreased and had a strong association with those in the HIP and SN samples. Pazopanib was the optimal compound targeting SNAP25, with a binding energy of − 9.2 kcal/mol. Conclusions Our results provided a theoretical basis for understanding the comorbidity mechanism of AD and PD and highlighted that SNAP25 in the olfactory epithelium may serve as a potential target for early detection and intervention in both AD and PD.

Funder

the College Students Innovative Entrepreneurial Training Plan Program

National Demonstration Center for Experimental Basic Medical Science Education

Faculty Startup Fund from Xuzhou Medical University

Xuzhou Science and Technology Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference44 articles.

1. Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, Shi S, Wang YJ, Du Y, Zhang J, Zhang J, Luo B, Qu Q, Zhou C, Gauthier S, Jia J. Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol. 2020;19(1):81–92.

2. Baldacci F, Mazzucchi S, Della Vecchia A, Giampietri L, Giannini N, Koronyo-Hamaoui M, Ceravolo R, Siciliano G, Bonuccelli U, Elahi FM, Vergallo A, Lista S, Giorgi FS, Hampel H. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn. 2020;20(4):421–41.

3. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR Jr. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dementia J Alzheimer’s Assoc. 2016;12(3):292–323.

4. Lashley T, Schott JM, Weston P, Murray CE, Wellington H, Keshavan A, Foti SC, Foiani M, Toombs J, Rohrer JD, Heslegrave A, Zetterberg H. Molecular biomarkers of Alzheimer’s disease: progress and prospects. Dis Models Mech. 2018;11(5):dmm031781.

5. Kovacs GG, Milenkovic I, Wöhrer A, Höftberger R, Gelpi E, Haberler C, Hönigschnabl S, Reiner-Concin A, Heinzl H, Jungwirth S, Krampla W, Fischer P, Budka H. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 2013;126(3):365–84.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3