Author:
Wang Lei,Zhang Guoan,Sun Wenjie,Zhang Yan,Tian Yi,Yang Xiaohui,Liu Yingfu
Abstract
Abstract
Background
Immune dysregulation is a feature of sepsis. However, a comprehensive analysis of the immune landscapes in septic patients has not been conducted.
Objectives
This study aims to explore the abundance ratios of immune cells in sepsis and investigate their clinical value.
Methods
Sepsis transcriptome data sets were downloaded from the NCBI GEO database. The immunedeconv R package was employed to analyze the abundance of immune cells in sepsis patients and calculate the ratios of different immune cell types. Differential analysis of immune cell ratios was performed using the t test. The Spearman rank correlation coefficient was utilized to find the relationships between immune cell abundance and pathways. The prognostic significance of immune cell ratios for patient survival probability was assessed using the log-rank test. In addition, differential gene expression was performed using the limma package, and gene co-expression analysis was executed using the WGCNA package.
Results
We found significant changes in immune cell ratios between sepsis patients and healthy controls. Some of these ratios were associated with 28-day survival. Certain pathways showed significant correlations with immune cell ratios. Notably, six immune cell ratios demonstrated discriminative ability for patients with systemic inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis, with an Area Under the Curve (AUC) larger than 0.84. Patients with a high eosinophil/B.cell.memory ratio exhibited poor survival outcomes. A total of 774 differential genes were identified in sepsis patients with a high eosinophil/B.cell.memory ratio compared to those with a low ratio. These genes were organized into seven co-expression modules associated with relevant pathways, including interferon signaling, T-cell receptor signaling, and specific granule pathways.
Conclusions
Immune cell ratios eosinophil/B.cell.memory and NK.cell.activated/NK.cell.resting in sepsis patients can be utilized for disease subtyping, prognosis, and diagnosis. The proposed cell ratios may have higher prognostic values than the neutrophil-to-lymphocyte ratio (NLR).
Funder
Hebei Provincial Key R&D Project
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.
2. Chakraborty, R. K. and Burns, B., Systemic inflammatory response syndrome StatPearls, Treasure Island (FL) ineligible companies. Disclosure: Bracken Burns declares no relevant financial relationships with ineligible companies. 2023.
3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.
4. Florescu DF, Kalil AC. The complex link between influenza and severe sepsis. Virulence. 2014;5:137–42.
5. Kocak Tufan Z, Kayaaslan B, Mer M. COVID-19 and sepsis. Turk J Med Sci. 2021;51:3301–11.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献