Icariin synergizes therapeutic effect of dexamethasone on adriamycin-induced nephrotic syndrome

Author:

Lv Juan,Xue Guozhong,Zhang Yunxia,Wang Xinbin,Dai Enlai

Abstract

Abstract Background Glomerular damage is a common clinical indicator of nephrotic syndrome. High-dose hormone treatment often leads to hormone resistance in patients. How to avoid resistance and improve the efficiency of hormone therapy draws much attention to clinicians. Methods Adriamycin (ADR) was used to induce nephropathy model in SD rats. The rats were treated with dexamethasone (DEX), icariin (ICA), and DEX + ICA combination therapy. The changes in urinary protein (UP), urea nitrogen (BUN), and serum creatinine (SCR) contents in rats were detected by enzyme-linked immunosorbent assay (ELISA), and the degree of pathological injury and the expression level of podocin were detected by HE staining and immunohistochemistry, to test the success of the model and the therapeutic effects of three different ways. The effect of treatments on podocytes autophagy was evaluated via transfection of mRFP-GFP-LC3 tandem adenovirus in vitro. Results The contents of UP, SCR, and BUN were significantly increased, the glomerulus was seriously damaged, and the expression of Nephrosis2 (NPHS2) was significantly decreased in the ADR-induced nephrotic syndrome rat model compared to that of the control group. DEX, ICA, and the DEX + ICA combined treatment significantly alleviated these above changes induced by ADR. The combined treatment of DEX + ICA exhibited better outcome than single treatment. The combined treatment also restored the podocyte autophagy, increased the expression of microtubule-associated protein light-chain 3II (LC3II), and reduced the expression of p62 in vitro. The combined treatment protects podocytes by mediating the PI3K/AKT/mTOR (rapamycin complex) signaling pathway. Conclusion ICA enhances the therapeutic effect of DEX on the nephrotic syndrome.

Funder

Regional Science Foundation Project

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3