Author:
Feng Hao,Hu Xing,Lin Yizi,Xiao Jingni,Dai Chao,Hu Zhaolan,Feng Hao,Qin Jiao,Chen Li
Abstract
AbstractDexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18–23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.
Funder
Hunan Provincial Natural Science Foundation Youth Foundation
Hunan Provincial Health Commission Foundation
Changsha Central Hospital Subject of South China University
Wenzhou basic scientific research Foundation
The Natural Science Foundation of Hunan Province
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Mei B, Xu G, Han W, Lu X, Liu R, Cheng X, Chen S, Gu E, Liu X, Zhang Y, G Perioperative Neurocognitive Disorders Study. The benefit of dexmedetomidine on postoperative cognitive function is unrelated to the modulation on peripheral inflammation: a single-center, prospective, randomized study. Clin J Pain. 2020;36:88–95.
2. Qian XL, Zhang W, Liu MZ, Zhou YB, Zhang JM, Han L, Peng YM, Jiang JH, Wang QD. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice. Eur J Pharmacol. 2015;746:206–12.
3. Guo B, Chen C, Yang L, Zhu R. Effects of dexmedetomidine on postoperative cognitive function of sleep deprivation rats based on changes in inflammatory response. Bioengineered. 2021;12:7920–8.
4. Hu J, Vacas S, Feng X, Lutrin D, Uchida Y, Lai IK, Maze M. Dexmedetomidine prevents cognitive decline by enhancing resolution of high mobility group box 1 protein-induced inflammation through a vagomimetic action in mice. Anesthesiology. 2018;128:921–31.
5. Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, Zheng X, Zeng W. Dexmedetomidine alleviates hypoxia-induced synaptic loss and cognitive impairment via inhibition of microglial NOX2 activation in the hippocampus of neonatal rats. Oxid Med Cell Longev. 2021;2021:6643171.