Causal relationships between type 1 diabetes mellitus and Alzheimer’s disease and Parkinson’s disease: a bidirectional two-sample Mendelian randomization study

Author:

Geng Chaofan,Meng Ke,Zhao Bo,Liu Xiaoduo,Tang Yi

Abstract

Abstract Background Previous compelling evidence suggests an association between Type 2 diabetes (T2D) and neurodegenerative diseases. However, it remains uncertain whether Type 1 diabetes mellitus (T1DM) exerts a causal influence on the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). Consequently, this study employed a bidirectional two-sample Mendelian Randomization (MR) approach to investigate the causal relationship between T1DM and the genetic susceptibility to AD and PD. Methods We utilized large-scale cohorts derived from publicly available genome-wide association study datasets involving European populations to perform MR analyses. The primary analytical method employed was the inverse-variance weighted (IVW) approach. Furthermore, sensitivity analyses, including assessments of heterogeneity and horizontal pleiotropy, were carried out using Cochran's Q, MR-Egger intercept, and MR-PRESSO tests to enhance the robustness of our conclusions. Results Using the IVW-based method, the MR analysis indicated no significant association between genetically determined T1DM and AD (OR = 0.984, 95% CI: 0.958–1.011, p = 0.247). Conversely, T1DM appeared to be associated with a reduced risk of genetic susceptibility to PD (IVW: OR = 0.958, 95% CI: 0.928–0.989, p = 0.001). In the reverse direction, no evidence of reverse causality was observed between AD (OR = 1.010, 95% CI: 0.911–1.116, p = 0.881) or PD (OR = 1.164, 95% CI: 0.686–2.025, p = 0.5202) and T1DM. Additionally, our analysis found no indications of the results being influenced by horizontal pleiotropy. Conclusion This MR study reveals that T1DM is associated with a reduced genetic susceptibility to PD, whereas no significant genetic susceptibility is observed between T1DM and AD. These findings suggest that T1DM may have a distinct role in the development of neurodegenerative diseases compared to T2D. Further investigations are warranted to elucidate the underlying mechanisms and provide a more comprehensive understanding of this relationship.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

STI2030-Major Projects

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3